Question
upstudy study bank question image url

Exercise 1.11 1. Factorise. a) \( a b+c b+a d+c d \) c) \( a k-b k-a m+b m \) e) \( b y-c y-b+c \) g) \( a-b-a c+b c \) i) \( 5 a+b(a+5)+b^{2} \) k) \( a^{2}-a(c-5)-5 c \) m) \( 3 x y^{2}+6 x y-y(y w+2 w) \) o) \( x^{4}+x^{3}+5 x+5 \)

Ask by Pena Schultz. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the factorizations: 1. **a)** \( ab + cb + ad + cd = (a + c)(b + d) \) 2. **c)** \( ak - bk - am + bm = (a - b)(k - m) \) 3. **e)** \( by - cy - b + c = (b - c)(y - 1) \) 4. **g)** \( a - b - ac + bc = -(a - b)(c - 1) \) 5. **i)** \( 5a + b(a + 5) + b^2 = (b + a)(b + 5) \) 6. **k)** \( a^2 - a(c - 5) - 5c = (a - c)(a + 5) \) 7. **m)** \( 3xy^2 + 6xy - y(yw + 2w) = y(3x - w)(y + 2) \) 8. **o)** \( x^4 + x^3 + 5x + 5 = (x + 1)(x^3 + 5) \)

Solution

Factor the expression by following steps: - step0: Factor: \(x^{4}+x^{3}+5x+5\) - step1: Rewrite the expression: \(x^{4}+5x+x^{3}+5\) - step2: Factor the expression: \(x\left(x^{3}+5\right)+x^{3}+5\) - step3: Factor the expression: \(\left(x+1\right)\left(x^{3}+5\right)\) Factor the expression \( a b+c b+a d+c d \). Factor the expression by following steps: - step0: Factor: \(ab+cb+ad+cd\) - step1: Rewrite the expression: \(ab+ad+cb+cd\) - step2: Factor the expression: \(a\left(b+d\right)+c\left(b+d\right)\) - step3: Factor the expression: \(\left(a+c\right)\left(b+d\right)\) Factor the expression \( a-b-a c+b c \). Factor the expression by following steps: - step0: Factor: \(a-b-ac+bc\) - step1: Rewrite the expression: \(-ac+a+bc-b\) - step2: Factor the expression: \(-a\left(c-1\right)+b\left(c-1\right)\) - step3: Factor the expression: \(\left(-a+b\right)\left(c-1\right)\) - step4: Factor the expression: \(-\left(a-b\right)\left(c-1\right)\) Factor the expression \( b y-c y-b+c \). Factor the expression by following steps: - step0: Factor: \(by-cy-b+c\) - step1: Rewrite the expression: \(by-b-cy+c\) - step2: Factor the expression: \(b\left(y-1\right)-c\left(y-1\right)\) - step3: Factor the expression: \(\left(b-c\right)\left(y-1\right)\) Factor the expression \( a k-b k-a m+b m \). Factor the expression by following steps: - step0: Factor: \(ak-bk-am+bm\) - step1: Rewrite the expression: \(ak-am-bk+bm\) - step2: Factor the expression: \(a\left(k-m\right)-b\left(k-m\right)\) - step3: Factor the expression: \(\left(a-b\right)\left(k-m\right)\) Factor the expression \( 5 a+b(a+5)+b^{2} \). Factor the expression by following steps: - step0: Factor: \(5a+b\left(a+5\right)+b^{2}\) - step1: Calculate: \(5a+b^{2}+b\left(a+5\right)\) - step2: Simplify: \(5a+b^{2}+ba+5b\) - step3: Rewrite the expression: \(b^{2}+5b+ab+5a\) - step4: Factor the expression: \(b\left(b+5\right)+a\left(b+5\right)\) - step5: Factor the expression: \(\left(b+a\right)\left(b+5\right)\) Factor the expression \( a^{2}-a(c-5)-5 c \). Factor the expression by following steps: - step0: Factor: \(a^{2}-a\left(c-5\right)-5c\) - step1: Calculate: \(a^{2}-5c-a\left(c-5\right)\) - step2: Simplify: \(a^{2}-5c-ac+5a\) - step3: Rewrite the expression: \(a^{2}+5a-ca-5c\) - step4: Factor the expression: \(a\left(a+5\right)-c\left(a+5\right)\) - step5: Factor the expression: \(\left(a-c\right)\left(a+5\right)\) Factor the expression \( 3 x y^{2}+6 x y-y(y w+2 w) \). Factor the expression by following steps: - step0: Factor: \(3xy^{2}+6xy-y\left(yw+2w\right)\) - step1: Factor the expression: \(\left(3x-w\right)\left(y^{2}+2y\right)\) - step2: Calculate: \(\left(3x-w\right)y\left(y+2\right)\) - step3: Calculate: \(y\left(3x-w\right)\left(y+2\right)\) Here are the factorizations for each expression: 1. **a)** \( ab + cb + ad + cd \) **Factored form:** \((a+c)(b+d)\) 2. **c)** \( ak - bk - am + bm \) **Factored form:** \((a-b)(k-m)\) 3. **e)** \( by - cy - b + c \) **Factored form:** \((b-c)(y-1)\) 4. **g)** \( a - b - ac + bc \) **Factored form:** \(-(a-b)(c-1)\) 5. **i)** \( 5a + b(a + 5) + b^2 \) **Factored form:** \((b+a)(b+5)\) 6. **k)** \( a^2 - a(c - 5) - 5c \) **Factored form:** \((a-c)(a+5)\) 7. **m)** \( 3xy^2 + 6xy - y(yw + 2w) \) **Factored form:** \(y(3x-w)(y+2)\) 8. **o)** \( x^4 + x^3 + 5x + 5 \) **Factored form:** \((x+1)(x^3+5)\) If you have any further questions or need additional assistance, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

1. Let's dive into the world of factorization! a) The expression \( a b+c b+a d+c d \) can be grouped as \( b(a+c) + d(a+c) \), leading to the factored form \( (a+c)(b+d) \). c) For \( a k-b k-a m+b m \), factor by grouping: \( k(a-b) + m(b-a) \), which can be written as \( (a-b)(k-m) \). e) Looking at \( b y-c y-b+c \), we can factor out \( y \) and reorganize: \( y(b-c) + 1(b-c) = (b-c)(y+1) \). g) The expression \( a-b-a c+b c \) can be rearranged and factored as: \( (b-a)(c+1) \) by recognizing common factors. i) In \( 5 a+b(a+5)+b^{2} \), we see that we can rewrite it as \( b^2 + b(a+5) + 5a \) which factors to \( (b+5)(b+a) \). k) The expression \( a^{2}-a(c-5)-5 c \) can be organized as a quadratic and factored as \( (a-5)(a+c) \). m) For \( 3 x y^{2}+6 x y-y(y w+2 w) \), organize terms and factor out common factors to get \( (3xy - w)(y + 2) \). o) Finally, in \( x^{4}+x^{3}+5 x+5 \), group terms cleverly to get \( (x^3 + 5)(x + 1) \). It’s amazing how we can uncover simpler forms of these expressions with just a bit of group work!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy