2.) Simplify: a.) \( \frac{6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1}}{27^{x+2}-2^{x+3}} \) b.) \( \frac{2^{x+2}}{2^{x+1}-2^{x+2}} \) c.) \( \frac{3 \cdot 2^{x}-2^{x-1}}{2^{x+2^{x+2}}} \) d.) \( \frac{2 \cdot 3^{x+2}+3^{x-3}}{5 \cdot 3^{x-2}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's simplify each expression step by step! a.) First, we rewrite each part in terms of powers of prime factors: \[ 27 = 3^3 \text{ and } 9 = 3^2, \text{ so } 9^{x+1} = (3^2)^{x+1} = 3^{2x+2} \] The denominator becomes: \[ 27^{x+2} - 2^{x+3} = 3^{3(x+2)} - 2^{x+3} = 3^{3x+6} - 2^{x+3} \] The numerator simplifies as: \[ 6^x = (2 \cdot 3)^x = 2^x \cdot 3^x, \text{ so } 6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1} = 2^{(x+1)+(x-1)} \cdot 3^x \cdot 3^{2x+2} = 2^{2x} \cdot 3^{3x+2} \] Thus, we have: \[ \frac{2^{2x} \cdot 3^{3x+2}}{3^{3x+6} - 2^{x+3}} \] b.) Notice the denominator: \[ 2^{x+1} - 2^{x+2} = 2^{x+1}(1 - 2) = -2^{x+1} \] Therefore, \[ \frac{2^{x+2}}{-2^{x+1}} = -2^{x+2-x-1} = -2^1 = -2 \] c.) Start by rearranging the numerator: \[ 3 \cdot 2^{x} - 2^{x-1} = 3 \cdot 2^x - \frac{2^x}{2} = 3 \cdot 2^x - \frac{1}{2} \cdot 2^x = \left(3 - \frac{1}{2}\right) 2^x = \frac{6-1}{2} 2^x = \frac{5}{2} 2^{x} \] For the denominator, since \(2^{x+2^{x+2}}\) is quite large, the simplified form of the entire expression becomes: \[ \frac{\frac{5}{2} \cdot 2^x}{2^{x + 2^{x+2}}} = \frac{5}{2} \cdot 2^{x - (x + 2^{x+2})} = \frac{5}{2} \cdot 2^{-2^{x+2}} \] d.) We can factor the numerator: \[ 2 \cdot 3^{x+2} + 3^{x-3} = 3^{x-3} \left(2 \cdot 3^5 + 1\right) = 3^{x-3} (2 \cdot 243 + 1) = 3^{x-3} (486 + 1) = 3^{x-3} \cdot 487 \] The denominator simplifies to: \[ 5 \cdot 3^{x-2} = 5 \cdot 3^{x-2} \] Thus, we have: \[ \frac{3^{x-3} \cdot 487}{5 \cdot 3^{x-2}} = \frac{487}{5 \cdot 3^1} = \frac{487}{15} \] Hence, the final simplified forms are: a.) \( \frac{2^{2x} \cdot 3^{3x+2}}{3^{3x+6} - 2^{x+3}} \) b.) \( -2 \) c.) \( \frac{5}{2} \cdot 2^{-2^{x+2}} \) d.) \( \frac{487}{15} \)