Question
upstudy study bank question image url

2.) Simplify: a.) \( \frac{6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1}}{27^{x+2}-2^{x+3}} \) b.) \( \frac{2^{x+2}}{2^{x+1}-2^{x+2}} \) c.) \( \frac{3 \cdot 2^{x}-2^{x-1}}{2^{x+2^{x+2}}} \) d.) \( \frac{2 \cdot 3^{x+2}+3^{x-3}}{5 \cdot 3^{x-2}} \)

Ask by Lowe Spencer. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{2^{3x} \cdot 3^{3x + 2}}{3^{3x + 6} - 2^{x + 3}} \]

Solution

Let's simplify each expression step by step. --- ### **Problem 2.a** Simplify: \[ \frac{6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1}}{27^{x+2} - 2^{x+3}} \] #### **Step 1: Express All Terms with Prime Bases** - \(6 = 2 \times 3\), so \(6^x = (2 \times 3)^x = 2^x \cdot 3^x\) - \(9 = 3^2\), so \(9^{x+1} = (3^2)^{x+1} = 3^{2x + 2}\) - \(27 = 3^3\), so \(27^{x+2} = (3^3)^{x+2} = 3^{3x + 6}\) #### **Step 2: Simplify the Numerator** Combine the powers of 2 and 3: \[ \begin{align*} 6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1} &= (2^x \cdot 3^x) \cdot 3^{2x + 2} \cdot 2^{x+1 + x-1} \\ &= 2^{3x} \cdot 3^{3x + 2} \end{align*} \] #### **Step 3: Simplify the Denominator** \[ 27^{x+2} - 2^{x+3} = 3^{3x + 6} - 2^{x + 3} \] #### **Step 4: Combine Numerator and Denominator** \[ \frac{2^{3x} \cdot 3^{3x + 2}}{3^{3x + 6} - 2^{x + 3}} \] #### **Final Simplified Expression** \[ \boxed{\dfrac{2^{\,3x}\, \cdot\, 3^{\,3x+2}}{\,3^{3x+6} - 2^{x+3}\,}} \] --- If you need further simplifications or assistance with parts **2.b**, **2.c**, or **2.d**, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify each expression step by step! a.) First, we rewrite each part in terms of powers of prime factors: \[ 27 = 3^3 \text{ and } 9 = 3^2, \text{ so } 9^{x+1} = (3^2)^{x+1} = 3^{2x+2} \] The denominator becomes: \[ 27^{x+2} - 2^{x+3} = 3^{3(x+2)} - 2^{x+3} = 3^{3x+6} - 2^{x+3} \] The numerator simplifies as: \[ 6^x = (2 \cdot 3)^x = 2^x \cdot 3^x, \text{ so } 6^{x} \cdot 9^{x+1} \cdot 2^{x+1} \cdot 2^{x-1} = 2^{(x+1)+(x-1)} \cdot 3^x \cdot 3^{2x+2} = 2^{2x} \cdot 3^{3x+2} \] Thus, we have: \[ \frac{2^{2x} \cdot 3^{3x+2}}{3^{3x+6} - 2^{x+3}} \] b.) Notice the denominator: \[ 2^{x+1} - 2^{x+2} = 2^{x+1}(1 - 2) = -2^{x+1} \] Therefore, \[ \frac{2^{x+2}}{-2^{x+1}} = -2^{x+2-x-1} = -2^1 = -2 \] c.) Start by rearranging the numerator: \[ 3 \cdot 2^{x} - 2^{x-1} = 3 \cdot 2^x - \frac{2^x}{2} = 3 \cdot 2^x - \frac{1}{2} \cdot 2^x = \left(3 - \frac{1}{2}\right) 2^x = \frac{6-1}{2} 2^x = \frac{5}{2} 2^{x} \] For the denominator, since \(2^{x+2^{x+2}}\) is quite large, the simplified form of the entire expression becomes: \[ \frac{\frac{5}{2} \cdot 2^x}{2^{x + 2^{x+2}}} = \frac{5}{2} \cdot 2^{x - (x + 2^{x+2})} = \frac{5}{2} \cdot 2^{-2^{x+2}} \] d.) We can factor the numerator: \[ 2 \cdot 3^{x+2} + 3^{x-3} = 3^{x-3} \left(2 \cdot 3^5 + 1\right) = 3^{x-3} (2 \cdot 243 + 1) = 3^{x-3} (486 + 1) = 3^{x-3} \cdot 487 \] The denominator simplifies to: \[ 5 \cdot 3^{x-2} = 5 \cdot 3^{x-2} \] Thus, we have: \[ \frac{3^{x-3} \cdot 487}{5 \cdot 3^{x-2}} = \frac{487}{5 \cdot 3^1} = \frac{487}{15} \] Hence, the final simplified forms are: a.) \( \frac{2^{2x} \cdot 3^{3x+2}}{3^{3x+6} - 2^{x+3}} \) b.) \( -2 \) c.) \( \frac{5}{2} \cdot 2^{-2^{x+2}} \) d.) \( \frac{487}{15} \)

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy