Answer
The values of \( x \) that make each sequence geometric are:
- **Sequence A:** \( x = -\dfrac{26}{3} \)
- **Sequence C:** \( x = 7 \) and \( x = -\dfrac{1}{3} \)
- **Sequence D:** \( x = 49 \) and \( x = 4 \)
Solution
To determine the values of \( x \) for which each given sequence forms a geometric sequence, we'll analyze each sequence individually. A geometric sequence satisfies the condition that the ratio of consecutive terms is constant.
For three terms \( a \), \( b \), and \( c \) to form a geometric sequence, the following condition must hold:
\[
\frac{b}{a} = \frac{c}{b}
\]
Let's apply this condition to each sequence:
---
### **Sequence A: \( 4x + 2 \), \( 2x - 6 \), \( x - 8 \)**
**Condition:**
\[
\frac{2x - 6}{4x + 2} = \frac{x - 8}{2x - 6}
\]
**Cross-Multiplying:**
\[
(2x - 6)^2 = (4x + 2)(x - 8)
\]
**Expanding Both Sides:**
\[
4x^2 - 24x + 36 = 4x^2 - 30x - 16
\]
**Simplifying:**
\[
-24x + 36 = -30x - 16 \\
6x = -52 \\
x = -\frac{26}{3}
\]
**Verification:**
- **Term 1:** \( 4\left(-\frac{26}{3}\right) + 2 = -\frac{104}{3} + \frac{6}{3} = -\frac{98}{3} \neq 0 \)
- **Term 2:** \( 2\left(-\frac{26}{3}\right) - 6 = -\frac{52}{3} - \frac{18}{3} = -\frac{70}{3} \neq 0 \)
**Conclusion:**
**\( x = -\frac{26}{3} \)** makes Sequence A a geometric sequence.
---
### **Sequence C: \( 7x + 1 \), \( x + 3 \), \( x - 5 \)**
**Condition:**
\[
\frac{x + 3}{7x + 1} = \frac{x - 5}{x + 3}
\]
**Cross-Multiplying:**
\[
(x + 3)^2 = (7x + 1)(x - 5)
\]
**Expanding Both Sides:**
\[
x^2 + 6x + 9 = 7x^2 - 34x - 5
\]
**Simplifying:**
\[
0 = 6x^2 - 40x - 14 \\
3x^2 - 20x - 7 = 0
\]
**Solving the Quadratic Equation:**
\[
x = \frac{20 \pm \sqrt{400 + 84}}{6} = \frac{20 \pm 22}{6}
\]
**Solutions:**
\[
x = \frac{42}{6} = 7 \\
x = \frac{-2}{6} = -\frac{1}{3}
\]
**Verification:**
- **For \( x = 7 \):**
- **Term 1:** \( 7(7) + 1 = 50 \neq 0 \)
- **Term 2:** \( 7 + 3 = 10 \neq 0 \)
- **For \( x = -\frac{1}{3} \):**
- **Term 1:** \( 7\left(-\frac{1}{3}\right) + 1 = -\frac{4}{3} \neq 0 \)
- **Term 2:** \( -\frac{1}{3} + 3 = \frac{8}{3} \neq 0 \)
**Conclusion:**
**\( x = 7 \)** and **\( x = -\frac{1}{3} \)** make Sequence C a geometric sequence.
---
### **Sequence D: \( x - 1 \), \( 2x - 14 \), \( 3x \)**
**Condition:**
\[
\frac{2x - 14}{x - 1} = \frac{3x}{2x - 14}
\]
**Cross-Multiplying:**
\[
(2x - 14)^2 = (x - 1)(3x)
\]
**Expanding Both Sides:**
\[
4x^2 - 56x + 196 = 3x^2 - 3x
\]
**Simplifying:**
\[
x^2 - 53x + 196 = 0
\]
**Solving the Quadratic Equation:**
\[
x = \frac{53 \pm \sqrt{2809 - 784}}{2} = \frac{53 \pm 45}{2}
\]
**Solutions:**
\[
x = \frac{98}{2} = 49 \\
x = \frac{8}{2} = 4
\]
**Verification:**
- **For \( x = 49 \):**
- **Term 1:** \( 49 - 1 = 48 \neq 0 \)
- **Term 2:** \( 2(49) - 14 = 84 \neq 0 \)
- **For \( x = 4 \):**
- **Term 1:** \( 4 - 1 = 3 \neq 0 \)
- **Term 2:** \( 2(4) - 14 = -6 \neq 0 \)
**Conclusion:**
**\( x = 49 \)** and **\( x = 4 \)** make Sequence D a geometric sequence.
---
### **Summary of Solutions**
- **Sequence A:** \( x = -\dfrac{26}{3} \)
- **Sequence C:** \( x = 7 \) and \( x = -\dfrac{1}{3} \)
- **Sequence D:** \( x = 49 \) and \( x = 4 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution