Question
upstudy study bank question image url

3. \( 1+1,5+2+4,5+\cdots+x=45 \quad x=? \)

Ask by Elliott Salazar. in Azerbaijan
Feb 07,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = 36 \)

Solution

Verilen ifade şu şekildedir: \[ 1 + 1.5 + 2 + 4.5 + \cdots + x = 45 \] Bu ifadeyi çözmek için, öncelikle dizinin terimlerini inceleyelim. İlk terim \(1\), ikinci terim \(1.5\), üçüncü terim \(2\), dördüncü terim \(4.5\) şeklindedir. Bu dizinin terimlerini belirlemek için bir örüntü bulmamız gerekiyor. Dizinin terimlerini sıralayalım: - \(1\) - \(1.5\) - \(2\) - \(4.5\) Bu terimlerin artışlarını inceleyelim: - \(1.5 - 1 = 0.5\) - \(2 - 1.5 = 0.5\) - \(4.5 - 2 = 2.5\) Burada bir örüntü bulmak zor görünüyor. Ancak, dizinin genel formunu bulmak için terimlerin toplamını inceleyelim. Dizinin toplamını \(S_n\) ile gösterelim. İlk dört terimi toplarsak: \[ S_4 = 1 + 1.5 + 2 + 4.5 = 9 \] Şimdi, dizinin toplamını \(45\) bulmak için \(x\) terimini ekleyelim. Yani: \[ S_n = 9 + x = 45 \] Buradan \(x\) değerini bulmak için denklemi çözelim: \[ x = 45 - 9 \] \[ x = 36 \] Sonuç olarak, \(x\) değeri: \[ \boxed{36} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the equation \( 1 + 1.5 + 2 + 4.5 + \cdots + x = 45 \), we first need to determine the pattern of the series. If we observe closely, the sequence can be represented as: - The first term \( a_1 = 1 \) - The second term \( a_2 = 1.5 = 1 + 0.5 \) - The third term \( a_3 = 2 = 1.5 + 0.5 \) - The fourth term \( a_4 = 4.5 = 2 + 2.5 \) Continuing this, we can see that the increments are not constant, but they seem to alternate between small jumps and larger ones. Identifying the exact sequence might be tricky without more clarity. If we calculate the running total until it exceeds 45: 1 + 1.5 = 2.5 2.5 + 2 = 4.5 4.5 + 4.5 = 9 As the pattern continues, we can try to find \( x \) such that the cumulative sum is equal to 45. However, let’s sum the terms from \( a_1 \) to \( a_n \) until we either find it directly or discover the pattern for \( x \). Continuing from the latest computation: 1 + 1.5 = 2.5 2.5 + 2 = 4.5 4.5 + 4.5 = 9 Now if we guess a potential stop point till \( x = 30 \): Totaling each next term, we will find combinations that yield 45. Digging deeper into the series: To directly find \( x \), we find what combination gives 45, resulting that \( x = 8.5 \) could come as a potential approximation. Thus, tweaking or iterating the correct term lead us to \( x \approx 8.5 \) as part of a growing series that sums to 45, while correcting overlaps. So the approach is through iterating exact values or honing down on patterns that repeat. Final \( x = 8.5 \) as part of the summation that aims at 45.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy