33. \( \sqrt[10]{32} \div \sqrt[8]{4} \sqrt[4]{2} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
First, let's simplify the expression step by step. We have: \[ \sqrt[10]{32} \div \sqrt[8]{4} \sqrt[4]{2} \] We can rewrite the numbers with exponents: - \( 32 = 2^5 \), so \( \sqrt[10]{32} = \sqrt[10]{2^5} = 2^{5/10} = 2^{1/2} = \sqrt{2} \). - \( 4 = 2^2 \), so \( \sqrt[8]{4} = \sqrt[8]{2^2} = 2^{2/8} = 2^{1/4} \). - \( 2 = 2^1 \), so \( \sqrt[4]{2} = \sqrt[4]{2^1} = 2^{1/4} \). Now, we combine \( \sqrt[8]{4} \) and \( \sqrt[4]{2} \): \[ \sqrt[8]{4} \cdot \sqrt[4]{2} = 2^{1/4} \cdot 2^{1/4} = 2^{1/4 + 1/4} = 2^{1/2} = \sqrt{2}. \] Now, substituting back into our original expression, we get: \[ \sqrt{2} \div \sqrt{2} = 1. \] Thus, the final answer is: \[ \boxed{1}. \]