Question
upstudy study bank question image url

By first finding the value of \( 6^{x} \), solve the equation \( \frac{8^{1+1}}{9}=\frac{2^{2+1}}{3^{1}} \)

Ask by Horton Pena. in Singapore
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = \frac{\ln\left(\frac{9}{4}\right)}{\ln(6)} \)

Solution

To solve the equation \[ \frac{8^{1+x}}{9} = \frac{2^{2x+1}}{3^{x}}, \] we can follow these steps, leveraging the value of \(6^{x}\) in the process. ### Step 1: Express All Terms with Prime Bases First, express all numbers in terms of their prime factors: - \(8 = 2^3\) - \(9 = 3^2\) Substituting these into the equation: \[ \frac{(2^3)^{1+x}}{3^2} = \frac{2^{2x+1}}{3^{x}} \] ### Step 2: Simplify the Exponents Apply the power rules (\((a^m)^n = a^{m \cdot n}\)): \[ \frac{2^{3(1+x)}}{3^2} = \frac{2^{2x+1}}{3^x} \] Simplify the exponents: \[ \frac{2^{3 + 3x}}{3^2} = \frac{2^{2x + 1}}{3^x} \] ### Step 3: Rearrange the Equation Multiply both sides by \(3^2 \cdot 3^x\) to eliminate the denominators: \[ 2^{3 + 3x} \cdot 3^x = 2^{2x + 1} \cdot 3^2 \] ### Step 4: Isolate the Terms Involving \(x\) Divide both sides by \(2^{2x + 1}\): \[ 2^{3 + 3x - (2x + 1)} \cdot 3^x = 3^2 \] Simplify the exponents: \[ 2^{2 + x} \cdot 3^x = 9 \] ### Step 5: Express in Terms of \(6^x\) Notice that \(6 = 2 \times 3\), so \(6^x = 2^x \cdot 3^x\). Rewrite the equation: \[ 2^{2} \cdot 2^x \cdot 3^x = 4 \cdot 6^x = 9 \] Thus: \[ 4 \cdot 6^x = 9 \] ### Step 6: Solve for \(6^x\) Divide both sides by 4: \[ 6^x = \frac{9}{4} \] ### Step 7: Solve for \(x\) To find \(x\), take the natural logarithm of both sides: \[ \ln(6^x) = \ln\left(\frac{9}{4}\right) \] Apply the logarithm power rule (\(\ln(a^b) = b \ln(a)\)): \[ x \ln(6) = \ln\left(\frac{9}{4}\right) \] Finally, solve for \(x\): \[ x = \frac{\ln\left(\frac{9}{4}\right)}{\ln(6)} \] ### Final Answer \[ x = \frac{\ln\left(\dfrac{9}{4}\right)}{\ln(6)} \] Or equivalently, \[ x = \log_6\left(\frac{9}{4}\right) \] ### Numerical Approximation (Optional) If you need a numerical value for \(x\): \[ x \approx \frac{\ln(2.25)}{\ln(6)} \approx \frac{0.81093}{1.79176} \approx 0.452 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \( \frac{8^{1+1}}{9}=\frac{2^{2+1}}{3^{1}} \), we first simplify both sides. On the left side: \[ 8^{1+1} = 8^{2} = (2^3)^{2} = 2^{6} \] So, \[ \frac{8^{2}}{9} = \frac{2^{6}}{9} \] On the right side: \[ 2^{2+1} = 2^{3} \quad \text{and} \quad 3^{1} = 3 \] Therefore, \[ \frac{2^{3}}{3} \] Now we equate the two sides: \[ \frac{2^{6}}{9} = \frac{2^{3}}{3} \] To eliminate the denominators, we cross-multiply: \[ 2^{6} \cdot 3 = 2^{3} \cdot 9 \] This simplifies to: \[ 3 \cdot 2^{6} = 9 \cdot 2^{3} \] We can write 9 as \( 3 \cdot 3 \): \[ 3 \cdot 2^{6} = 3 \cdot 3 \cdot 2^{3} \] Dividing both sides by 3 (as long as \( 3 \neq 0 \)): \[ 2^{6} = 3 \cdot 2^{3} \] Next, we can divide both sides by \( 2^{3} \): \[ \frac{2^{6}}{2^{3}} = 3 \] This gives: \[ 2^{3} = 3 \] Since \( 2^{3} = 8 \), we know that: \[ 8 \neq 3 \] There are no solutions with real numbers for \( x \) in the original equation because \( \frac{8}{9} \) and \( \frac{2^{3}}{3} \) cannot be equal. Consequently, the solution lies in realizing that there are inconsistencies in the presumed equality. Thus, confirming our calculations, \( x \) cannot be found through this method, and the equation has no solution.

Related Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Algebra Romania Jan 30, 2025

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Algebra Romania Jan 30, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy