Answer
Here are the complex numbers converted to standard form:
1. \( 3 \, \text{cis} \, \frac{4\pi}{3} = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \)
2. \( 4 \, \text{cis} \, \frac{\pi}{6} = 2\sqrt{3} + 2i \)
3. \( 2 \, \text{cis} \, \frac{7\pi}{4} = \sqrt{2} - \sqrt{2}i \)
4. \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} = -2 + 2i \)
Each is plotted in their respective quadrants on the complex plane with their corresponding angles and moduli.
Solution
Sure! Let's convert each given complex number from polar form to standard form \( a + bi \) and describe their positions on the complex plane.
### 10. \( 3 \, \text{cis} \, \frac{4\pi}{3} \)
**Conversion to Standard Form:**
\[
3 \, \text{cis} \, \frac{4\pi}{3} = 3 \left( \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \right)
\]
Calculate the cosine and sine:
\[
\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}
\]
So,
\[
3 \left( -\frac{1}{2} + i \left( -\frac{\sqrt{3}}{2} \right) \right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i
\]
**Standard Form:**
\[
- \frac{3}{2} - \frac{3\sqrt{3}}{2}i
\]
**Position on the Complex Plane:**
- **Quadrant:** III (both real and imaginary parts are negative)
- **Modulus:** 3
- **Angle:** \( \frac{4\pi}{3} \) radians (240°)
---
### 11. \( 4 \, \text{cis} \, \frac{\pi}{6} \)
**Conversion to Standard Form:**
\[
4 \, \text{cis} \, \frac{\pi}{6} = 4 \left( \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right)
\]
Calculate the cosine and sine:
\[
\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}
\]
So,
\[
4 \left( \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right) = 2\sqrt{3} + 2i
\]
**Standard Form:**
\[
2\sqrt{3} + 2i
\]
**Position on the Complex Plane:**
- **Quadrant:** I (both real and imaginary parts are positive)
- **Modulus:** 4
- **Angle:** \( \frac{\pi}{6} \) radians (30°)
---
### 12. \( 2 \, \text{cis} \, \frac{7\pi}{4} \)
**Conversion to Standard Form:**
\[
2 \, \text{cis} \, \frac{7\pi}{4} = 2 \left( \cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right) \right)
\]
Calculate the cosine and sine:
\[
\cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}
\]
So,
\[
2 \left( \frac{\sqrt{2}}{2} + i \left( -\frac{\sqrt{2}}{2} \right) \right) = \sqrt{2} - \sqrt{2}i
\]
**Standard Form:**
\[
\sqrt{2} - \sqrt{2}i
\]
**Position on the Complex Plane:**
- **Quadrant:** IV (real part positive, imaginary part negative)
- **Modulus:** 2
- **Angle:** \( \frac{7\pi}{4} \) radians (315°)
---
### 13. \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} \)
**Conversion to Standard Form:**
\[
2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} = 2\sqrt{2} \left( \cos\left(\frac{3\pi}{4}\right) + i \sin\left(\frac{3\pi}{4}\right) \right)
\]
Calculate the cosine and sine:
\[
\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \quad \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}
\]
So,
\[
2\sqrt{2} \left( -\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2} \right) = -2 + 2i
\]
**Standard Form:**
\[
-2 + 2i
\]
**Position on the Complex Plane:**
- **Quadrant:** II (real part negative, imaginary part positive)
- **Modulus:** \( 2\sqrt{2} \)
- **Angle:** \( \frac{3\pi}{4} \) radians (135°)
---
### Summary
| Problem | Polar Form | Standard Form | Quadrant | Modulus | Angle (radians) |
|---------|---------------------------|-------------------------|----------|---------|-----------------|
| 10 | \( 3 \, \text{cis} \, \frac{4\pi}{3} \) | \( -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \) | III | 3 | \( \frac{4\pi}{3} \) |
| 11 | \( 4 \, \text{cis} \, \frac{\pi}{6} \) | \( 2\sqrt{3} + 2i \) | I | 4 | \( \frac{\pi}{6} \) |
| 12 | \( 2 \, \text{cis} \, \frac{7\pi}{4} \) | \( \sqrt{2} - \sqrt{2}i \) | IV | 2 | \( \frac{7\pi}{4} \) |
| 13 | \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} \) | \( -2 + 2i \) | II | \( 2\sqrt{2} \) | \( \frac{3\pi}{4} \) |
These conversions allow you to plot each complex number accurately on the complex plane by identifying their real and imaginary components.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution