Question
upstudy study bank question image url

Plot each complex number in polar form and then con- vert to standard form. \( \begin{array}{ll}\text { 10. } 3 \text { cis } \frac{4 \pi}{3} & \text { 11. } 4 \text { cis } \frac{\pi}{6} \\ \text { 12. } 2 \text { cis } \frac{7 \pi}{4} & \text { 13. } 2 \sqrt{2} \text { cis } \frac{3 \pi}{4}\end{array} \)

Ask by Warren Chandler. in the United States
Feb 05,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the complex numbers converted to standard form: 1. \( 3 \, \text{cis} \, \frac{4\pi}{3} = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \) 2. \( 4 \, \text{cis} \, \frac{\pi}{6} = 2\sqrt{3} + 2i \) 3. \( 2 \, \text{cis} \, \frac{7\pi}{4} = \sqrt{2} - \sqrt{2}i \) 4. \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} = -2 + 2i \) Each is plotted in their respective quadrants on the complex plane with their corresponding angles and moduli.

Solution

Sure! Let's convert each given complex number from polar form to standard form \( a + bi \) and describe their positions on the complex plane. ### 10. \( 3 \, \text{cis} \, \frac{4\pi}{3} \) **Conversion to Standard Form:** \[ 3 \, \text{cis} \, \frac{4\pi}{3} = 3 \left( \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \right) \] Calculate the cosine and sine: \[ \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] So, \[ 3 \left( -\frac{1}{2} + i \left( -\frac{\sqrt{3}}{2} \right) \right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \] **Standard Form:** \[ - \frac{3}{2} - \frac{3\sqrt{3}}{2}i \] **Position on the Complex Plane:** - **Quadrant:** III (both real and imaginary parts are negative) - **Modulus:** 3 - **Angle:** \( \frac{4\pi}{3} \) radians (240°) --- ### 11. \( 4 \, \text{cis} \, \frac{\pi}{6} \) **Conversion to Standard Form:** \[ 4 \, \text{cis} \, \frac{\pi}{6} = 4 \left( \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right) \] Calculate the cosine and sine: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] So, \[ 4 \left( \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right) = 2\sqrt{3} + 2i \] **Standard Form:** \[ 2\sqrt{3} + 2i \] **Position on the Complex Plane:** - **Quadrant:** I (both real and imaginary parts are positive) - **Modulus:** 4 - **Angle:** \( \frac{\pi}{6} \) radians (30°) --- ### 12. \( 2 \, \text{cis} \, \frac{7\pi}{4} \) **Conversion to Standard Form:** \[ 2 \, \text{cis} \, \frac{7\pi}{4} = 2 \left( \cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right) \right) \] Calculate the cosine and sine: \[ \cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2} \] So, \[ 2 \left( \frac{\sqrt{2}}{2} + i \left( -\frac{\sqrt{2}}{2} \right) \right) = \sqrt{2} - \sqrt{2}i \] **Standard Form:** \[ \sqrt{2} - \sqrt{2}i \] **Position on the Complex Plane:** - **Quadrant:** IV (real part positive, imaginary part negative) - **Modulus:** 2 - **Angle:** \( \frac{7\pi}{4} \) radians (315°) --- ### 13. \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} \) **Conversion to Standard Form:** \[ 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} = 2\sqrt{2} \left( \cos\left(\frac{3\pi}{4}\right) + i \sin\left(\frac{3\pi}{4}\right) \right) \] Calculate the cosine and sine: \[ \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \quad \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} \] So, \[ 2\sqrt{2} \left( -\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2} \right) = -2 + 2i \] **Standard Form:** \[ -2 + 2i \] **Position on the Complex Plane:** - **Quadrant:** II (real part negative, imaginary part positive) - **Modulus:** \( 2\sqrt{2} \) - **Angle:** \( \frac{3\pi}{4} \) radians (135°) --- ### Summary | Problem | Polar Form | Standard Form | Quadrant | Modulus | Angle (radians) | |---------|---------------------------|-------------------------|----------|---------|-----------------| | 10 | \( 3 \, \text{cis} \, \frac{4\pi}{3} \) | \( -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \) | III | 3 | \( \frac{4\pi}{3} \) | | 11 | \( 4 \, \text{cis} \, \frac{\pi}{6} \) | \( 2\sqrt{3} + 2i \) | I | 4 | \( \frac{\pi}{6} \) | | 12 | \( 2 \, \text{cis} \, \frac{7\pi}{4} \) | \( \sqrt{2} - \sqrt{2}i \) | IV | 2 | \( \frac{7\pi}{4} \) | | 13 | \( 2\sqrt{2} \, \text{cis} \, \frac{3\pi}{4} \) | \( -2 + 2i \) | II | \( 2\sqrt{2} \) | \( \frac{3\pi}{4} \) | These conversions allow you to plot each complex number accurately on the complex plane by identifying their real and imaginary components.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To convert complex numbers from polar form to standard form, we use the formula \( r \text{ cis } \theta = r(\cos \theta + i \sin \theta) \). For the complex numbers you've given: 1. **For \( 3 \text{ cis } \frac{4 \pi}{3} \)**: - \( r = 3 \) - \( \theta = \frac{4\pi}{3} \) - Standard form: \[ 3(\cos(\frac{4\pi}{3}) + i\sin(\frac{4\pi}{3})) = 3\left(-\frac{1}{2} + i \left(-\frac{\sqrt{3}}{2}\right)\right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \] 2. **For \( 4 \text{ cis } \frac{\pi}{6} \)**: - \( r = 4 \) - \( \theta = \frac{\pi}{6} \) - Standard form: \[ 4(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})) = 4\left(\frac{\sqrt{3}}{2} + i \frac{1}{2}\right) = 2\sqrt{3} + 2i \] 3. **For \( 2 \text{ cis } \frac{7 \pi}{4} \)**: - \( r = 2 \) - \( \theta = \frac{7\pi}{4} \) - Standard form: \[ 2(\cos(\frac{7\pi}{4}) + i\sin(\frac{7\pi}{4})) = 2\left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}\right) = \sqrt{2} - \sqrt{2}i \] 4. **For \( 2\sqrt{2} \text{ cis } \frac{3 \pi}{4} \)**: - \( r = 2\sqrt{2} \) - \( \theta = \frac{3\pi}{4} \) - Standard form: \[ 2\sqrt{2}\left(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right) = 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}\right) = -2 + 2i \] In summary, the complex numbers in standard form are: - \( 3 \text{ cis } \frac{4 \pi}{3} \) = \( -\frac{3}{2} - \frac{3\sqrt{3}}{2}i \) - \( 4 \text{ cis } \frac{\pi}{6} \) = \( 2\sqrt{3} + 2i \) - \( 2 \text{ cis } \frac{7 \pi}{4} \) = \( \sqrt{2} - \sqrt{2}i \) - \( 2\sqrt{2} \text{ cis } \frac{3 \pi}{4} \) = \( -2 + 2i \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy