Question
Write each of the following scries in sigma notation: \( \begin{array}{ll}\text { (a) } 2+4+6+8+10+12 & \text { (b) } 1+8+27+64+125 \\ \text { (c) } \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{128} & \text { (d) } 3-6+12-24+\ldots . \text { to } n \text { terms } \\ \text { (c) } \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\ldots .+\frac{24}{25} & \text { (f) } 5+5+5+5+5+\ldots . \text { to } n \text { terms } \\ \text { (g) } 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . & \text { (The Harmonic Series) }\end{array} \)
Ask by Garrett Colon. in South Africa
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here are the sigma notations for each series:
(a) \( \sum_{i=1}^{6} 2i \)
(b) \( \sum_{i=1}^{5} i^3 \)
(c) \( \sum_{i=1}^{7} \frac{1}{2^i} \)
(d) \( \sum_{i=1}^{n} 3 \cdot (-2)^{i-1} \)
(e) \( \sum_{i=1}^{24} \frac{i}{i+1} \)
(f) \( \sum_{i=1}^{n} 5 \)
(g) \( \sum_{i=1}^{\infty} \frac{1}{i} \)
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
Mind Expander
For the given series, we can express each in sigma notation as follows: (a) \( \sum_{k=1}^{6} 2k \) (b) \( \sum_{k=1}^{5} k^3 \) (c) \( \sum_{k=1}^{7} \frac{1}{2^k} \) (d) \( \sum_{k=1}^{n} (-1)^{k+1} k! \) (e) \( \sum_{k=1}^{24} \frac{k}{k+1} \) (f) \( \sum_{k=1}^{n} 5 \) (g) \( \sum_{k=1}^{\infty} \frac{1}{k} \) That should cover all your series in sigma notation! Happy calculating!