Subtract the polynomials. \[ \left(\frac{7}{8} x^{7}-\frac{9}{7} x-\frac{2}{5}\right)-\left(\frac{3}{8} x^{7}-\frac{4}{7} x+\frac{6}{5}\right)=\square \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To subtract the polynomials, we need to distribute the negative sign through the second polynomial and then combine like terms. Start by rewriting the expression: \[ \left(\frac{7}{8} x^{7} - \frac{9}{7} x - \frac{2}{5}\right) - \left(\frac{3}{8} x^{7} - \frac{4}{7} x + \frac{6}{5}\right) \] Distributing the negative sign gives: \[ \frac{7}{8} x^{7} - \frac{9}{7} x - \frac{2}{5} - \frac{3}{8} x^{7} + \frac{4}{7} x - \frac{6}{5} \] Now, combine the like terms. For the \(x^{7}\) terms: \[ \frac{7}{8} x^{7} - \frac{3}{8} x^{7} = \left(\frac{7}{8} - \frac{3}{8}\right)x^{7} = \frac{4}{8} x^{7} = \frac{1}{2} x^{7} \] Next, combine the \(x\) terms: \[ -\frac{9}{7} x + \frac{4}{7} x = \left(-\frac{9}{7} + \frac{4}{7}\right)x = -\frac{5}{7} x \] Finally, combine the constant terms: \[ -\frac{2}{5} - \frac{6}{5} = -\frac{8}{5} \] Putting it all together, we get: \[ \frac{1}{2} x^{7} - \frac{5}{7} x - \frac{8}{5} \] So the final answer is: \[ \frac{1}{2} x^{7} - \frac{5}{7} x - \frac{8}{5} \]