Answer
a. \( \int(2 x+\sqrt{x}) d x = x^{2}+\frac{2}{3}x\sqrt{x} + C \)
b. \( \int \frac{2 x}{3 x^{2}-1} d x = \frac{1}{3}\ln{(3x^{2}-1)} + C \)
c. La integral \( \int e^{-x} \cdot(1+e^{-x})^{5} d x \) no se pudo calcular.
d. La integral \( \int \frac{\sin x \cos x}{1+\sin x} d x \) no se pudo calcular.
e. \( \int x^{2} \sqrt{x}+1 d x = \frac{2}{7}x^{3}\sqrt{x}+x + C \)
f. \( \int \sin(2 x) \cdot e^{2 x} d x = \frac{e^{2x}\sin(2x)}{4}-\frac{e^{2x}\cos(2x)}{4} + C \)
g. \( \int \frac{3 x-1}{x^{2}-5 x} d x = \ln{(x^{\frac{1}{5}}(x-5)^{\frac{14}{5}})} + C \)
Si necesitas ayuda con las integrales que no se pudieron calcular, házmelo saber.
Solution
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{2x}{3x^{2}-1} dx\)
- step1: Rewrite the expression:
\(\int 2\times \frac{x}{3x^{2}-1} dx\)
- step2: Use properties of integrals:
\(2\times \int \frac{x}{3x^{2}-1} dx\)
- step3: Use the substitution \(dx=\frac{1}{6x} dt\) to transform the integral\(:\)
\(2\times \int \frac{x}{3x^{2}-1}\times \frac{1}{6x} dt\)
- step4: Simplify:
\(2\times \int \frac{1}{6\times 3x^{2}-6} dt\)
- step5: Use the substitution \(t=3x^{2}\) to transform the integral\(:\)
\(2\times \int \frac{1}{6t-6} dt\)
- step6: Rewrite the expression:
\(2\times \int \frac{1}{6}\times \frac{1}{t-1} dt\)
- step7: Use properties of integrals:
\(2\times \frac{1}{6}\times \int \frac{1}{t-1} dt\)
- step8: Multiply the numbers:
\(\frac{1}{3}\times \int \frac{1}{t-1} dt\)
- step9: Evaluate the integral:
\(\frac{1}{3}\ln{\left(\left|t-1\right|\right)}\)
- step10: Substitute back:
\(\frac{1}{3}\ln{\left(\left|3x^{2}-1\right|\right)}\)
- step11: Add the constant of integral C:
\(\frac{1}{3}\ln{\left(\left|3x^{2}-1\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \int(2 x+\sqrt{x}) d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(2x+\sqrt{x}\right) dx\)
- step1: Use properties of integrals:
\(\int 2x dx+\int \sqrt{x} dx\)
- step2: Evaluate the integral:
\(x^{2}+\int \sqrt{x} dx\)
- step3: Evaluate the integral:
\(x^{2}+\frac{2}{3}x^{\frac{3}{2}}\)
- step4: Simplify:
\(x^{2}+\frac{2}{3}x\sqrt{x}\)
- step5: Add the constant of integral C:
\(x^{2}+\frac{2}{3}x\sqrt{x} + C, C \in \mathbb{R}\)
Calculate the integral \( \int x^{2} \sqrt{x}+1 d x \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int \left(x^{2}\sqrt{x}+1\right) dx\)
- step1: Use properties of integrals:
\(\int x^{2}\sqrt{x} dx+\int 1 dx\)
- step2: Evaluate the integral:
\(\frac{2}{3}x^{\frac{7}{2}}-\frac{8}{21}x^{\frac{7}{2}}+\int 1 dx\)
- step3: Evaluate the integral:
\(\frac{2}{3}x^{\frac{7}{2}}-\frac{8}{21}x^{\frac{7}{2}}+x\)
- step4: Calculate:
\(\frac{2}{7}x^{\frac{7}{2}}+x\)
- step5: Simplify:
\(\frac{2}{7}x^{3}\sqrt{x}+x\)
- step6: Add the constant of integral C:
\(\frac{2}{7}x^{3}\sqrt{x}+x + C, C \in \mathbb{R}\)
Calculate the integral \( \int \sin(2 x) \cdot e^{2 x} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \sin\left(2x\right)\times e^{2x} dx\)
- step1: Evaluate the integral:
\(\frac{e^{2x}}{2^{2}+2^{2}}\times \left(2\sin\left(2x\right)-2\cos\left(2x\right)\right)\)
- step2: Add the numbers:
\(\frac{e^{2x}}{8}\left(2\sin\left(2x\right)-2\cos\left(2x\right)\right)\)
- step3: Rewrite the expression:
\(\frac{e^{2x}}{8}\times 2\left(\sin\left(2x\right)-\cos\left(2x\right)\right)\)
- step4: Reduce the fraction:
\(\frac{e^{2x}}{4}\left(\sin\left(2x\right)-\cos\left(2x\right)\right)\)
- step5: Multiply the terms:
\(\frac{e^{2x}\left(\sin\left(2x\right)-\cos\left(2x\right)\right)}{4}\)
- step6: Simplify the expression:
\(\frac{e^{2x}\sin\left(2x\right)-e^{2x}\cos\left(2x\right)}{4}\)
- step7: Calculate:
\(\frac{e^{2x}\sin\left(2x\right)}{4}-\frac{e^{2x}\cos\left(2x\right)}{4}\)
- step8: Add the constant of integral C:
\(\frac{e^{2x}\sin\left(2x\right)}{4}-\frac{e^{2x}\cos\left(2x\right)}{4} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{3 x-1}{x^{2}-5 x} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{3x-1}{x^{2}-5x} dx\)
- step1: Rewrite the fraction:
\(\int \left(\frac{1}{5x}+\frac{14}{5x-25}\right) dx\)
- step2: Use properties of integrals:
\(\int \frac{1}{5x} dx+\int \frac{14}{5x-25} dx\)
- step3: Evaluate the integral:
\(\frac{1}{5}\ln{\left(\left|x\right|\right)}+\int \frac{14}{5x-25} dx\)
- step4: Evaluate the integral:
\(\frac{1}{5}\ln{\left(\left|x\right|\right)}+\frac{14}{5}\ln{\left(\left|x-5\right|\right)}\)
- step5: Use the logarithm base change rule:
\(\ln{\left(\left|x\right|^{\frac{1}{5}}\right)}+\ln{\left(\left(x-5\right)^{\frac{14}{5}}\right)}\)
- step6: Transform the expression:
\(\ln{\left(\left|x\right|^{\frac{1}{5}}\times \left(x-5\right)^{\frac{14}{5}}\right)}\)
- step7: Simplify:
\(\ln{\left(\left|x^{\frac{1}{5}}\right|\times \left(x-5\right)^{\frac{14}{5}}\right)}\)
- step8: Add the constant of integral C:
\(\ln{\left(\left|x^{\frac{1}{5}}\right|\times \left(x-5\right)^{\frac{14}{5}}\right)} + C, C \in \mathbb{R}\)
Aquí están las soluciones a las integrales solicitadas:
a. Para la integral \( \int(2 x+\sqrt{x}) d x \):
\[
\int(2 x+\sqrt{x}) d x = x^{2}+\frac{2}{3}x\sqrt{x} + C, \quad C \in \mathbb{R}
\]
b. Para la integral \( \int \frac{2 x}{3 x^{2}-1} d x \):
\[
\int \frac{2 x}{3 x^{2}-1} d x = \frac{1}{3}\ln{(3x^{2}-1)} + C, \quad C \in \mathbb{R}
\]
c. La integral \( \int e^{-x} \cdot(1+e^{-x})^{5} d x \) no se pudo calcular debido a un tiempo de espera en el cálculo.
d. La integral \( \int \frac{\sin x \cos x}{1+\sin x} d x \) no se pudo calcular debido a que la operación no es soportada.
e. Para la integral \( \int x^{2} \sqrt{x}+1 d x \):
\[
\int x^{2} \sqrt{x}+1 d x = \frac{2}{7}x^{3}\sqrt{x}+x + C, \quad C \in \mathbb{R}
\]
f. Para la integral \( \int \sin(2 x) \cdot e^{2 x} d x \):
\[
\int \sin(2 x) \cdot e^{2 x} d x = \frac{e^{2x}\sin(2x)}{4}-\frac{e^{2x}\cos(2x)}{4} + C, \quad C \in \mathbb{R}
\]
g. Para la integral \( \int \frac{3 x-1}{x^{2}-5 x} d x \):
\[
\int \frac{3 x-1}{x^{2}-5 x} d x = \ln{(x^{\frac{1}{5}}(x-5)^{\frac{14}{5}})} + C, \quad C \in \mathbb{R}
\]
Si necesitas más ayuda con la integral que no se pudo calcular o cualquier otra consulta, házmelo saber.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution