Multiply the rational expressions. \( \frac{4 x^{2} y^{9}}{12 x y^{8}} \cdot \frac{6 x^{2}}{32 y^{2}}=\square \quad \frac{\square}{\square} \square^{\square} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To multiply the rational expressions, first, simplify each expression before multiplying. The first fraction simplifies as follows: \( \frac{4x^2y^9}{12xy^8} = \frac{4}{12} \cdot \frac{x^2}{x} \cdot \frac{y^9}{y^8} = \frac{1}{3} \cdot x \cdot y = \frac{xy}{3} \). For the second fraction: \( \frac{6x^2}{32y^2} = \frac{6}{32} \cdot \frac{x^2}{1} \cdot \frac{1}{y^2} = \frac{3}{16} \cdot x^2 = \frac{3x^2}{16} \). Now, multiply the two simplified fractions: \[ \frac{xy}{3} \cdot \frac{3x^2}{16} = \frac{xy \cdot 3x^2}{3 \cdot 16} = \frac{3x^3y}{48} = \frac{x^3y}{16}. \] Thus, the answer is: \(\frac{x^3y}{16}\).