Simplify the following expresions: \( 2 a b^{2}(4 a-3 c+7 b c) \) \( (2 a-3 b)\left(4 a^{2}+6 a b+9 b^{2}\right) \) \( (8 x y-7 z)(9 x y+3 x-5 z) \) \( (f-15 g)(6 f-4 f g-3 g) \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Let's simplify each of the expressions step by step. 1. **For \( 2 a b^{2}(4 a-3 c+7 b c) \)**: Distribute \( 2 a b^{2} \) into the parenthesis: \[ = 2 a b^{2} \cdot 4 a - 2 a b^{2} \cdot 3 c + 2 a b^{2} \cdot 7 b c \] \[ = 8 a^{2} b^{2} - 6 a b^{2} c + 14 a b^{3} c \] Final simplified expression: \[ 8 a^{2} b^{2} + (14 a b^{3} c - 6 a b^{2} c) \] 2. **For \( (2 a-3 b)(4 a^{2}+6 a b+9 b^{2}) \)**: Use the distributive property: \[ = 2 a (4 a^{2}+6 a b+9 b^{2}) - 3 b (4 a^{2}+6 a b+9 b^{2}) \] Calculate each term: \[ = 8 a^{3} + 12 a^{2} b + 18 a b^{2} - (12 a^{2} b + 18 a b^{2} + 27 b^{3}) \] Combining like terms: \[ = 8 a^3 + 0 + 0 - 27 b^3 \] Final simplified expression: \[ 8 a^{3} - 27 b^{3} \] 3. **For \( (8 x y-7 z)(9 x y+3 x-5 z) \)**: Again, distribute: \[ = 8 x y (9 x y) + 8 x y(3 x) + 8 x y(-5 z) - 7 z(9 x y) - 7 z(3 x) - 7 z(-5 z) \] Calculating each term: \[ = 72 x^2 y^2 + 24 x^2 y - 40 x y z - 63 x y z - 21 z x + 35 z^2 \] Combine like terms: \[ = 72 x^2 y^2 + 24 x^2 y - 103 x y z + 35 z^2 \] Final simplified expression: \[ 72 x^2 y^2 + 24 x^2 y - 103 x y z + 35 z^2 \] 4. **For \( (f-15 g)(6 f-4 f g-3 g) \)**: Distribute using the distributive property: \[ = f(6 f - 4 f g - 3 g) - 15 g(6 f - 4 f g - 3 g) \] Calculating gives: \[ = 6 f^2 - 4 f^2 g - 3 f g + (-90 fg + 60 f g^2 + 45 g^2) \] Combine like terms: \[ = 6 f^2 - (4 f^2 g + 90 fg) + (60 f g^2 + 45 g^2) - 3 fg \] Final simplified expression: \[ 6 f^2 - 94 fg + 60 f g^2 + 45 g^2 \] And there you have the simplified forms for each expression!