Answer
\[
\begin{array}{lll}
1. & 0.\overline{4} = \frac{4}{9} & 2. & 0.\overline{7} = \frac{7}{9} \\
3. & 0.25\overline{5} = \frac{23}{90} & 4. & 0.\overline{42} = \frac{14}{33} \\
5. & -2.\overline{6} = -\frac{8}{3}
\end{array}
\]
Solution
To convert recurring decimals into common fractions, we can express each decimal as an infinite geometric series and then find the sum of that series. Below are the step-by-step conversions for each given recurring decimal:
### **(1) \(0.\overline{4}\)**
**Step 1: Express as an Infinite Series**
\[
0.\overline{4} = 0.4444\ldots = \frac{4}{10} + \frac{4}{100} + \frac{4}{1000} + \frac{4}{10000} + \cdots
\]
**Step 2: Identify the Geometric Series Parameters**
- **First term (\(a\))**: \(\frac{4}{10}\)
- **Common ratio (\(r\))**: \(\frac{1}{10}\)
**Step 3: Calculate the Sum of the Infinite Series**
\[
\text{Sum} = \frac{a}{1 - r} = \frac{\frac{4}{10}}{1 - \frac{1}{10}} = \frac{\frac{4}{10}}{\frac{9}{10}} = \frac{4}{9}
\]
**Final Answer:**
\[
0.\overline{4} = \frac{4}{9}
\]
---
### **(2) \(0.\overline{7}\)**
**Step 1: Express as an Infinite Series**
\[
0.\overline{7} = 0.7777\ldots = \frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \frac{7}{10000} + \cdots
\]
**Step 2: Identify the Geometric Series Parameters**
- **First term (\(a\))**: \(\frac{7}{10}\)
- **Common ratio (\(r\))**: \(\frac{1}{10}\)
**Step 3: Calculate the Sum of the Infinite Series**
\[
\text{Sum} = \frac{a}{1 - r} = \frac{\frac{7}{10}}{1 - \frac{1}{10}} = \frac{\frac{7}{10}}{\frac{9}{10}} = \frac{7}{9}
\]
**Final Answer:**
\[
0.\overline{7} = \frac{7}{9}
\]
---
### **(3) \(0.25\overline{5}\)**
**Step 1: Express as an Infinite Series**
\[
0.25\overline{5} = 0.25555\ldots = 0.25 + 0.005 + 0.0005 + 0.00005 + \cdots
\]
**Step 2: Separate the Non-Repeating and Repeating Parts**
- **Non-repeating part**: \(0.25\)
- **Repeating part**: \(0.005 + 0.0005 + 0.00005 + \cdots\)
**Step 3: Identify the Geometric Series Parameters for the Repeating Part**
- **First term (\(a\))**: \(\frac{5}{1000}\) (which is \(0.005\))
- **Common ratio (\(r\))**: \(\frac{1}{10}\)
**Step 4: Calculate the Sum of the Repeating Infinite Series**
\[
\text{Sum of repeating part} = \frac{a}{1 - r} = \frac{\frac{5}{1000}}{1 - \frac{1}{10}} = \frac{\frac{5}{1000}}{\frac{9}{10}} = \frac{5}{900} = \frac{1}{180}
\]
**Step 5: Add the Non-Repeating Part**
\[
\text{Total Sum} = 0.25 + \frac{1}{180} = \frac{25}{100} + \frac{1}{180} = \frac{45}{180} + \frac{1}{180} = \frac{46}{180} = \frac{23}{90}
\]
**Final Answer:**
\[
0.25\overline{5} = \frac{23}{90}
\]
---
### **(4) \(0.\overline{42}\)**
**Step 1: Express as an Infinite Series**
\[
0.\overline{42} = 0.424242\ldots = \frac{42}{100} + \frac{42}{10000} + \frac{42}{1000000} + \cdots
\]
**Step 2: Identify the Geometric Series Parameters**
- **First term (\(a\))**: \(\frac{42}{100}\)
- **Common ratio (\(r\))**: \(\frac{1}{100}\)
**Step 3: Calculate the Sum of the Infinite Series**
\[
\text{Sum} = \frac{a}{1 - r} = \frac{\frac{42}{100}}{1 - \frac{1}{100}} = \frac{\frac{42}{100}}{\frac{99}{100}} = \frac{42}{99} = \frac{14}{33}
\]
**Final Answer:**
\[
0.\overline{42} = \frac{14}{33}
\]
---
### **(5) \(-2.\overline{6}\)**
**Step 1: Express the Decimal Part as an Infinite Series**
\[
-2.\overline{6} = -2.6666\ldots = -2 - 0.6666\ldots
\]
\[
0.\overline{6} = \frac{6}{10} + \frac{6}{100} + \frac{6}{1000} + \frac{6}{10000} + \cdots
\]
**Step 2: Identify the Geometric Series Parameters for the Decimal Part**
- **First term (\(a\))**: \(\frac{6}{10}\)
- **Common ratio (\(r\))**: \(\frac{1}{10}\)
**Step 3: Calculate the Sum of the Decimal Infinite Series**
\[
\text{Sum of decimal part} = \frac{a}{1 - r} = \frac{\frac{6}{10}}{1 - \frac{1}{10}} = \frac{\frac{6}{10}}{\frac{9}{10}} = \frac{6}{9} = \frac{2}{3}
\]
**Step 4: Combine with the Integer Part**
\[
-2.\overline{6} = -2 - \frac{2}{3} = -\frac{6}{3} - \frac{2}{3} = -\frac{8}{3}
\]
**Final Answer:**
\[
-2.\overline{6} = -\frac{8}{3}
\]
---
### **Summary of Conversions**
1. \(0.\overline{4} = \frac{4}{9}\)
2. \(0.\overline{7} = \frac{7}{9}\)
3. \(0.25\overline{5} = \frac{23}{90}\)
4. \(0.\overline{42} = \frac{14}{33}\)
5. \(-2.\overline{6} = -\frac{8}{3}\)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution