Question
- In an isosceles triangle, one of the base angles is
. Calculate the size of the vertex angle.
Answer.
(2.)
30. A plot of land has a perimeter of 210 me tres. If the length of the plot is 70 metres, what is the width?
Answer.
(2)
(2.)
30. A plot of land has a perimeter of 210 me tres. If the length of the plot is 70 metres, what is the width?
(2)
Ask by Kelley Franklin. in Guyana
Jan 23,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
Problem 29:
- In an isosceles triangle, one base angle is
. - The vertex angle is
.
Problem 30:
- A rectangular plot has a perimeter of 210 metres and a length of 70 metres.
- The width of the plot is
metres.
Solution
Problem 29
In an isosceles triangle, one of the base angles is
. Calculate the size of the vertex angle.
Solution:
-
Understanding the Triangle:
- An isosceles triangle has two equal sides and two equal base angles.
- Given one base angle is
, the other base angle is also .
-
Sum of Angles in a Triangle:
-
Calculating the Vertex Angle:
Answer: The vertex angle measures
.
Problem 30
A plot of land has a perimeter of 210 metres. If the length of the plot is 70 metres, what is the width?
Solution:
-
Assumption:
- The plot is rectangular. (If the shape is different, additional information is required.)
-
Formula for Perimeter of a Rectangle:
-
Plugging in the Known Values:
Answer: The width of the plot is
metres.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


The Deep Dive
In an isosceles triangle, the two base angles are equal, so if one base angle is
, the other must also be
. To find the vertex angle, we can use the triangle angle sum property, which states that the sum of angles in a triangle is
. Thus, the vertex angle is calculated as
.
For a plot of land with a perimeter of 210 meters and a length of 70 meters, you can calculate the width by first determining the total length of the two widths combined. Subtract the length from the perimeter:
meters. Since there are two equal widths in the plot, you divide this value by 2, resulting in a width of
meters. So the plot is a perfect square!