Cuestion 43, 2.3.25 Find the zeros for the polynomial function and give the multiplicity for each zero. State whether the graph crosses \( 39.33 \%, 44.05 \) of the \( x \)-axis or touches the \( x \)-axis and turns around at each zero. \( f(x)=5(x-6)(x-1)^{2} \) Determine the zero(s) The zero(s) is/are \( \square \) (Type integers or decimals Use a comma to separate answers as needed )
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Para encontrar los ceros de la función polinómica \( f(x)=5(x-6)(x-1)^{2} \), debemos igualar \( f(x) \) a cero. Esto nos da: \[ 5(x-6)(x-1)^{2} = 0 \] Los ceros son: 1. \( x - 6 = 0 \) ⇒ \( x = 6 \) (multiplicidad 1) 2. \( (x - 1)^{2} = 0 \) ⇒ \( x = 1 \) (multiplicidad 2) Esto significa que los ceros son \( 6 \) y \( 1 \). El gráfico cruza el eje \( x \) en \( x = 6 \) (multiplicidad impar) y toca y gira en \( x = 1 \) (multiplicidad par). Por lo tanto, los ceros son \( \text{6, 1} \).