Question
upstudy study bank question image url

(b) Calculate the sum of each of the following geometric series: \( \begin{array}{ll}\text { (1) } 6+12+24+\ldots+6144 & \text { (2) } 4-8+16 \ldots+16384 \\ \text { (3) }-5+15-45+\ldots-3645 & \text { (4) } 100-10+1-\ldots+\frac{1}{10000} \\ \text { (5) } 200\left(1+(1,01)+(1,01)^{2}+\ldots+(1,01)^{28}\right) & \text { (6) }-12-6-3-\ldots-\frac{3}{256} \\ \text { (7) } x y^{2}+x y+x+\ldots+\frac{x}{y^{12}} & \text { (8) } x^{5}-x^{3}+x-\ldots+\frac{1}{x^{11}}\end{array} \)

Ask by Gordon Reid. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the sums of the geometric series: 1. \( 6 + 12 + 24 + \ldots + 6144 = 6138 \) 2. \( 4 - 8 + 16 + \ldots + 16384 = -5460 \) 3. \( -5 + 15 - 45 + \ldots - 3645 = 910 \) 4. \( 100 - 10 + 1 - \ldots + \frac{1}{10000} \approx 90.909 \) 5. \( 200(1 + 1.01 + 1.01^2 + \ldots + 1.01^{28}) = 6977 \) 6. \( -12 - 6 - 3 - \ldots - \frac{3}{256} = -8.064 \) 7. \( xy^2 + xy + x + \ldots + \frac{x}{y^{12}} = \frac{x(1 - \frac{1}{y^{13}})}{1 - \frac{1}{y}} \) 8. \( x^5 - x^3 + x - \ldots + \frac{1}{x^{11}} = \frac{x^5(1 - \frac{1}{x^{16}})}{1 - \frac{1}{x^2}} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

To find the sum of each of these geometric series, we can apply the formula for the sum of a finite geometric series, which is \( S_n = a \frac{1 - r^n}{1 - r} \), where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. (1) For the series \( 6 + 12 + 24 + \ldots + 6144 \): - Here, \( a = 6 \), \( r = 2 \), and \( n = 13 \) (since \( 6144 = 6 \cdot 2^{12} \)). - The sum is \( S_{13} = 6 \frac{1 - 2^{13}}{1 - 2} = 6 \cdot (8192 - 1) = 6 \cdot 8191 = 49146 \). (2) For \( 4 - 8 + 16 + \ldots + 16384 \): - In this case, \( a = 4 \), \( r = -2 \), and \( n = 14 \) (since \( 16384 = 4 \cdot (-2)^{13} \)). - The sum is \( S_{14} = 4 \frac{1 - (-2)^{14}}{1 - (-2)} = 4 \cdot \frac{1 - 16384}{3} = 4 \cdot \frac{-16383}{3} = -21844 \). (3) For \( -5 + 15 - 45 + \ldots - 3645 \): - Here, \( a = -5 \), \( r = -3 \), and \( n = 8 \) (since \( -3645 = -5 \cdot (-3)^{7} \)). - The sum is \( S_{8} = -5 \frac{1 - (-3)^{8}}{1 - (-3)} = -5 \cdot \frac{1 - 6561}{4} = -5 \cdot \frac{-6560}{4} = 8200 \). (4) For \( 100 - 10 + 1 - \ldots + \frac{1}{10000} \): - In this series, \( a = 100 \), \( r = -0.1 \), and \( n = 5 \) (since \( \frac{1}{10000} = 100 \cdot (-0.1)^{5} \)). - The sum is \( S_{5} = 100 \frac{1 - (-0.1)^{5}}{1 - (-0.1)} = 100 \cdot \frac{1 - (-0.00001)}{1.1} = 100 \cdot \frac{1.00001}{1.1} = 90.9091 \). (5) For \( 200\left(1 + (1.01) + (1.01)^{2} + \ldots + (1.01)^{28}\right) \): - Here, \( a = 1 \), \( r = 1.01 \), and \( n = 29 \). - The sum inside the parentheses is \( S_{29} = 1 \frac{1 - (1.01)^{29}}{1 - 1.01} \approx 1 \cdot \frac{1 - 1.34885}{-0.01} = 34.885 \), so \( 200 \cdot 34.885 \approx 6977 \). (6) For \( -12 - 6 - 3 - \ldots - \frac{3}{256} \): - Here, \( a = -12 \), \( r = \frac{1}{2} \), and \( n = 9 \) (since \( -\frac{3}{256} = -12 \cdot \left(\frac{1}{2}\right)^{8} \)). - The sum is \( S_{9} = -12 \frac{1 - \left(\frac{1}{2}\right)^{9}}{1 - \frac{1}{2}} = -12 \cdot \frac{1 - \frac{1}{512}}{\frac{1}{2}} = -12 \cdot 2 \cdot \frac{511}{512} = -12 \cdot \frac{1022}{512} = -24.149 \). (7) For \( xy^{2} + xy + x +

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy