Question
upstudy study bank question image url

Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, \( A^{-1} \), that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient. \[ \begin{array}{l}-2 x-4 y=1 \\ -6 x-9 y=-8\end{array} \] Answer Attempt sout of 2 \( A^{-1}= \)

Ask by Black Fitzgerald. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The inverse matrix \( A^{-1} \) used to solve the system is: \[ A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \] The solution to the system is: \[ x = \frac{41}{6}, \quad y = -\frac{11}{3} \]

Solution

To solve the system of equations using an inverse matrix, we first need to express the system in matrix form. The given equations are: \[ \begin{align*} -2x - 4y &= 1 \quad \text{(1)} \\ -6x - 9y &= -8 \quad \text{(2)} \end{align*} \] We can rewrite this system in the form \( A\mathbf{x} = \mathbf{b} \), where: \[ A = \begin{pmatrix} -2 & -4 \\ -6 & -9 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -8 \end{pmatrix} \] Next, we need to find the inverse of matrix \( A \), denoted as \( A^{-1} \). The formula for the inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Calculating the determinant \( ad - bc \): \[ a = -2, \quad b = -4, \quad c = -6, \quad d = -9 \] \[ \text{det}(A) = (-2)(-9) - (-4)(-6) = 18 - 24 = -6 \] Now we can find the inverse matrix \( A^{-1} \): \[ A^{-1} = \frac{1}{-6} \begin{pmatrix} -9 & 4 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \] Now, we can use the inverse matrix to solve for \( \mathbf{x} \): \[ \mathbf{x} = A^{-1} \mathbf{b} \] Calculating \( \mathbf{x} \): \[ \mathbf{x} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 \\ -8 \end{pmatrix} \] Calculating the product: \[ \begin{pmatrix} \frac{3}{2} \cdot 1 + (-\frac{2}{3}) \cdot (-8) \\ -1 \cdot 1 + \frac{1}{3} \cdot (-8) \end{pmatrix} = \begin{pmatrix} \frac{3}{2} + \frac{16}{3} \\ -1 - \frac{8}{3} \end{pmatrix} \] Finding a common denominator for the first component: \[ \frac{3}{2} = \frac{9}{6}, \quad \frac{16}{3} = \frac{32}{6} \quad \Rightarrow \quad \frac{9}{6} + \frac{32}{6} = \frac{41}{6} \] For the second component: \[ -1 = -\frac{3}{3} \quad \Rightarrow \quad -\frac{3}{3} - \frac{8}{3} = -\frac{11}{3} \] Thus, we have: \[ \mathbf{x} = \begin{pmatrix} \frac{41}{6} \\ -\frac{11}{3} \end{pmatrix} \] Finally, the solution to the system of equations is: \[ x = \frac{41}{6}, \quad y = -\frac{11}{3} \] The inverse matrix used is: \[ A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the system of equations using an inverse matrix, first we need to convert the equations into matrix form, \( AX = B \). The system is given as: \[ \begin{array}{l} -2x - 4y = 1 \\ -6x - 9y = -8 \end{array} \] This can be expressed in matrix form as: \[ \begin{pmatrix} -2 & -4 \\ -6 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \end{pmatrix} \] Now, we define the matrices: \[ A = \begin{pmatrix} -2 & -4 \\ -6 & -9 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ -8 \end{pmatrix} \] Next, we calculate the inverse of matrix \( A \) using the formula for the inverse of a 2x2 matrix: \[ A^{-1} = \frac{1}{det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] where \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). Calculating the determinant: \[ det(A) = (-2)(-9) - (-4)(-6) = 18 - 24 = -6 \] Thus, the inverse \( A^{-1} \) is: \[ A^{-1} = \frac{1}{-6} \begin{pmatrix} -9 & 4 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \] Now, we use \( A^{-1} \) to find \( X \): \[ X = A^{-1}B = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 \\ -8 \end{pmatrix} \] Calculating the product: \[ X = \begin{pmatrix} \frac{3}{2} \times 1 + (-\frac{2}{3}) \times (-8) \\ -1 \times 1 + \frac{1}{3} \times (-8) \end{pmatrix} = \begin{pmatrix} \frac{3}{2} + \frac{16}{3} \\ -1 - \frac{8}{3} \end{pmatrix} \] Finding a common denominator for the first component: \(\frac{3}{2} = \frac{9}{6}\) and \(\frac{16}{3} = \frac{32}{6}\) \[ \text{First component: } \frac{9}{6} + \frac{32}{6} = \frac{41}{6} \] Finding the second component: \(-1 = -\frac{3}{3}\) \[ \text{Second component: } -\frac{3}{3} - \frac{8}{3} = -\frac{11}{3} \] So, the solution vector \( X \) is: \[ X = \begin{pmatrix} \frac{41}{6} \\ -\frac{11}{3} \end{pmatrix} \] Thus, the final answer is: \[ A^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy