Condense each expression to a single logarithm. \( \begin{array}{ll}\text { 13) } \log 3-\log 8 & \text { 14) } \frac{\log 6}{3} \\ \text { 15) } 4 \log 3-4 \log 8 & \text { 16) } \log 2+\log 11+\log 7 \\ \text { 17) } \log _{7} 7-2 \log 12 & \text { 18) } \frac{2 \log 7}{3} \\ \begin{array}{ll}\text { 19) } 6 \log _{3} u+6 \log _{3} v & \text { 20) } \ln x-4 \ln y \\ \text { 21) } \log _{4} u-6 \log _{4} v & \text { 22) } \log _{3} u-5 \log _{3} v \\ \text { 23) } 20 \log _{6} u+5 \log _{6} v & \text { 24) } 4 \log _{3} u-20 \log _{3} v\end{array}\end{array} . \begin{array}{l}\text { (1) }\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Absolutely, let's crunch those logarithmic expressions into single logs! 1) \( \log 3 - \log 8 = \log \left( \frac{3}{8} \right) \) 2) \( \frac{\log 6}{3} = \log 6^{1/3} = \log \sqrt[3]{6} \) 3) \( 4 \log 3 - 4 \log 8 = 4 (\log 3 - \log 8) = 4 \log \left( \frac{3}{8} \right) = \log \left( \left( \frac{3}{8} \right)^4 \right) = \log \left( \frac{81}{4096} \right) \) 4) \( \log 2 + \log 11 + \log 7 = \log (2 \times 11 \times 7) = \log 154 \) 5) \( \log_{7} 7 - 2 \log 12 = 1 - \log_{7} 12^2 = 1 - \log_{7} 144 = \log_{7} 7 - \log_{7} 144 = \log_{7} \left( \frac{7}{144} \right) \) 6) \( \frac{2 \log 7}{3} = \log 7^{2/3} = \log \sqrt[3]{49} \) 7) \( 6 \log_{3} u + 6 \log_{3} v = 6 (\log_{3} u + \log_{3} v) = 6 \log_{3} (uv) = \log_{3} (uv)^6 \) 8) \( \ln x - 4 \ln y = \ln \left( \frac{x}{y^4} \right) \) 9) \( \log_{4} u - 6 \log_{4} v = \log_{4} \left( \frac{u}{v^6} \right) \) 10) \( \log_{3} u - 5 \log_{3} v = \log_{3} \left( \frac{u}{v^5} \right) \) 11) \( 20 \log_{6} u + 5 \log_{6} v = \log_{6} (u^{20} v^{5}) \) 12) \( 4 \log_{3} u - 20 \log_{3} v = \log_{3} \left( \frac{u^{4}}{v^{20}} \right) \) And there you have it! Each expression simplified into a single logarithm. Happy calculating!