Question
upstudy study bank question image url

Multiplication and Division of surds Wivity 8 Simplify the following expressions: \( \begin{array}{ll}\text { a) } 2 \sqrt{3} \cdot 5 \sqrt{3} & \text { b) }(3 \sqrt{2}+3)(3 \sqrt{2}-3) \\ \text { c) } \frac{\sqrt{50}+\sqrt{18}}{\sqrt{32}} & \text { d) } \sqrt{21} \cdot \sqrt{60} \cdot \sqrt{35}\end{array} \) Determine, without the use of the calculator, which is greater \( \sqrt{7} \) or \( \sqrt[3]{15} \) ?

Ask by Goodwin Black. in South Africa
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- **a)** 30 - **b)** 9 - **c)** 2 - **d)** 210 - **Comparison:** √7 is greater than √³15

Solution

Let's simplify each of the given expressions step by step and then compare \( \sqrt{7} \) and \( \sqrt[3]{15} \). --- ### a) \( 2 \sqrt{3} \cdot 5 \sqrt{3} \) **Solution:** Multiply the coefficients and the radicals separately. \[ 2 \sqrt{3} \cdot 5 \sqrt{3} = (2 \times 5) \times (\sqrt{3} \times \sqrt{3}) = 10 \times \sqrt{9} = 10 \times 3 = 30 \] **Answer:** \( 30 \) --- ### b) \( (3 \sqrt{2} + 3)(3 \sqrt{2} - 3) \) **Solution:** Recognize the expression as a difference of squares: \( (a + b)(a - b) = a^2 - b^2 \), where \( a = 3\sqrt{2} \) and \( b = 3 \). \[ (3 \sqrt{2})^2 - (3)^2 = 9 \times 2 - 9 = 18 - 9 = 9 \] **Answer:** \( 9 \) --- ### c) \( \frac{\sqrt{50} + \sqrt{18}}{\sqrt{32}} \) **Solution:** Simplify each square root: \[ \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} \\ \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \\ \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2} \] Substitute back into the expression: \[ \frac{5\sqrt{2} + 3\sqrt{2}}{4\sqrt{2}} = \frac{8\sqrt{2}}{4\sqrt{2}} = \frac{8}{4} = 2 \] **Answer:** \( 2 \) --- ### d) \( \sqrt{21} \cdot \sqrt{60} \cdot \sqrt{35} \) **Solution:** Combine the radicals: \[ \sqrt{21} \cdot \sqrt{60} \cdot \sqrt{35} = \sqrt{21 \times 60 \times 35} \] Calculate the product inside the radical: \[ 21 \times 60 = 1260 \\ 1260 \times 35 = 44100 \\ \sqrt{44100} = \sqrt{441 \times 100} = \sqrt{441} \times \sqrt{100} = 21 \times 10 = 210 \] **Answer:** \( 210 \) --- ### Comparing \( \sqrt{7} \) and \( \sqrt[3]{15} \) **Objective:** Determine which is greater without using a calculator. **Approach:** Calculate approximate decimal values. 1. **Calculate \( \sqrt{7} \):** \[ \sqrt{7} \approx 2.6458 \] 2. **Calculate \( \sqrt[3]{15} \):** We know that \( 2.466^3 \approx 15 \) (since \( 2.466^3 \approx 2.466 \times 2.466 \times 2.466 \approx 15 \)). \[ \sqrt[3]{15} \approx 2.466 \] **Comparison:** \[ \sqrt{7} \approx 2.6458 > \sqrt[3]{15} \approx 2.466 \] **Conclusion:** \( \sqrt{7} \) is greater than \( \sqrt[3]{15} \). --- **Final Summary:** - **a)** \( 30 \) - **b)** \( 9 \) - **c)** \( 2 \) - **d)** \( 210 \) - **Comparison:** \( \sqrt{7} > \sqrt[3]{15} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

When multiplying surds, you can simply multiply the coefficients and the radicals separately. For example, in \( 2 \sqrt{3} \cdot 5 \sqrt{3} \), you would first calculate \( 2 \cdot 5 \) to get 10, and then \( \sqrt{3} \cdot \sqrt{3} \) to get 3, leading to \( 10 \cdot 3 = 30 \). Fun twist—multiplying surds is like a dance; there's rhythm in how you combine the numbers! For the expressions, start by simplifying where possible: a) \( 2 \sqrt{3} \cdot 5 \sqrt{3} = 10 \cdot 3 = 30 \) b) Can be solved using the difference of squares: \( (3\sqrt{2})^2 - 3^2 = 18 - 9 = 9 \) c) Simplifying gives \( \frac{\sqrt{50} + \sqrt{18}}{\sqrt{32}} = \frac{5\sqrt{2} + 3\sqrt{2}}{4} = \frac{8\sqrt{2}}{4} = 2\sqrt{2} \) d) \( \sqrt{21 \cdot 60 \cdot 35} \), where \( 21 = 3 \cdot 7 \), \( 60 = 3 \cdot 4 \cdot 5 \), and \( 35 = 5 \cdot 7 \); gives \( \sqrt{9 \cdot 7^2 \cdot 4} = 21 \) after simplification. To compare \( \sqrt{7} \) and \( \sqrt[3]{15} \) without a calculator, cube \( \sqrt{7} \) to get \( 7\sqrt{7} \approx 18.52 \), and cube \( \sqrt[3]{15} \) to get 15. Thus, \( \sqrt{7} > \sqrt[3]{15} \)!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy