\( \begin{array}{ll}\begin{array}{ll}\text { a) } 36=2^{2} \times 3^{2} & 90\end{array}=3^{2} \times 2 \times 5 & \\ \text { m.c.m. }(36,90)= & \\ \text { b) } 35=5 \times 7 & =2^{2} \times 3 \times 5 \\ \text { m.c.m. }(35,60)= & \\ \text { c) } 112=2^{4} \times 7 & 72=2^{3} \times 3^{2} \\ \text { m.c.m. }(112,72)= & \\ \text { d) } 24=2^{3} \times 3 & 30=2 \times 3 \times 5\end{array} \quad 45=3^{2} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the least common multiple (m.c.m.) of numbers, we take the highest power of all prime factors present in any of the numbers. For \( m.c.m.(36,90) \): The prime factorizations are \( 36 = 2^2 \times 3^2 \) and \( 90 = 2^1 \times 3^2 \times 5^1 \). Thus, the m.c.m. is \( 2^2 \times 3^2 \times 5^1 = 180 \). For \( m.c.m.(35,60) \): \( 35 = 5^1 \times 7^1 \) and \( 60 = 2^2 \times 3^1 \times 5^1 \). So, the m.c.m. is \( 2^2 \times 3^1 \times 5^1 \times 7^1 = 420 \). For \( m.c.m.(112,72) \): Here, \( 112 = 2^4 \times 7^1 \) and \( 72 = 2^3 \times 3^2 \). The m.c.m. is \( 2^4 \times 3^2 \times 7^1 = 504 \). For \( m.c.m.(24,30) \): With \( 24 = 2^3 \times 3^1 \) and \( 30 = 2^1 \times 3^1 \times 5^1 \), we find \( 2^3 \times 3^1 \times 5^1 = 120 \). So the final m.c.m. results are: - \( m.c.m.(36,90) = 180 \) - \( m.c.m.(35,60) = 420 \) - \( m.c.m.(112,72) = 504 \) - \( m.c.m.(24,30) = 120 \)