Answer
The solutions are:
1. \( x = -1 \) and \( x = 6 \)
2. \( x = 5 \)
3. \( x = \frac{-1 + \sqrt{33}}{4} \) and \( x = \frac{-1 - \sqrt{33}}{4} \)
Solution
Solve the equation \( x-5=\frac{6}{x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x-5=\frac{6}{x}\)
- step1: Find the domain:
\(x-5=\frac{6}{x},x\neq 0\)
- step2: Multiply both sides of the equation by LCD:
\(\left(x-5\right)x=\frac{6}{x}\times x\)
- step3: Simplify the equation:
\(x^{2}-5x=6\)
- step4: Move the expression to the left side:
\(x^{2}-5x-6=0\)
- step5: Factor the expression:
\(\left(x-6\right)\left(x+1\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-6=0\\&x+1=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=6\\&x=-1\end{align}\)
- step8: Check if the solution is in the defined range:
\(\begin{align}&x=6\\&x=-1\end{align},x\neq 0\)
- step9: Find the intersection:
\(\begin{align}&x=6\\&x=-1\end{align}\)
- step10: Rewrite:
\(x_{1}=-1,x_{2}=6\)
Solve the equation \( \\frac{x^{2}-3x-7}{x^{2}-x-2}=\\frac{x+2}{x+1}-1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x^{2}-3x-7}{x^{2}-x-2}=\frac{x+2}{x+1}-1\)
- step1: Find the domain:
\(\frac{x^{2}-3x-7}{x^{2}-x-2}=\frac{x+2}{x+1}-1,x \in \left(-\infty,-1\right)\cup \left(-1,2\right)\cup \left(2,+\infty\right)\)
- step2: Multiply both sides of the equation by LCD:
\(\frac{x^{2}-3x-7}{x^{2}-x-2}\times \left(x+1\right)\left(x-2\right)=\left(\frac{x+2}{x+1}-1\right)\left(x+1\right)\left(x-2\right)\)
- step3: Simplify the equation:
\(x^{2}-3x-7=x-2\)
- step4: Move the expression to the left side:
\(x^{2}-3x-7-\left(x-2\right)=0\)
- step5: Subtract the terms:
\(x^{2}-4x-5=0\)
- step6: Factor the expression:
\(\left(x-5\right)\left(x+1\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&x-5=0\\&x+1=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=5\\&x=-1\end{align}\)
- step9: Check if the solution is in the defined range:
\(\begin{align}&x=5\\&x=-1\end{align},x \in \left(-\infty,-1\right)\cup \left(-1,2\right)\cup \left(2,+\infty\right)\)
- step10: Find the intersection:
\(x=5\)
Solve the equation \( \\frac{2}{x}-\\frac{x+1}{x+2}=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{2}{x}-\frac{x+1}{x+2}=1\)
- step1: Find the domain:
\(\frac{2}{x}-\frac{x+1}{x+2}=1,x \in \left(-\infty,-2\right)\cup \left(-2,0\right)\cup \left(0,+\infty\right)\)
- step2: Multiply both sides of the equation by LCD:
\(\left(\frac{2}{x}-\frac{x+1}{x+2}\right)x\left(x+2\right)=1\times x\left(x+2\right)\)
- step3: Simplify the equation:
\(x+4-x^{2}=x^{2}+2x\)
- step4: Move the expression to the left side:
\(x+4-x^{2}-\left(x^{2}+2x\right)=0\)
- step5: Calculate:
\(-x+4-2x^{2}=0\)
- step6: Rewrite in standard form:
\(-2x^{2}-x+4=0\)
- step7: Multiply both sides:
\(2x^{2}+x-4=0\)
- step8: Solve using the quadratic formula:
\(x=\frac{-1\pm \sqrt{1^{2}-4\times 2\left(-4\right)}}{2\times 2}\)
- step9: Simplify the expression:
\(x=\frac{-1\pm \sqrt{1^{2}-4\times 2\left(-4\right)}}{4}\)
- step10: Simplify the expression:
\(x=\frac{-1\pm \sqrt{33}}{4}\)
- step11: Separate into possible cases:
\(\begin{align}&x=\frac{-1+\sqrt{33}}{4}\\&x=\frac{-1-\sqrt{33}}{4}\end{align}\)
- step12: Rewrite the fraction:
\(\begin{align}&x=\frac{-1+\sqrt{33}}{4}\\&x=-\frac{1+\sqrt{33}}{4}\end{align}\)
- step13: Check if the solution is in the defined range:
\(\begin{align}&x=\frac{-1+\sqrt{33}}{4}\\&x=-\frac{1+\sqrt{33}}{4}\end{align},x \in \left(-\infty,-2\right)\cup \left(-2,0\right)\cup \left(0,+\infty\right)\)
- step14: Find the intersection:
\(\begin{align}&x=\frac{-1+\sqrt{33}}{4}\\&x=-\frac{1+\sqrt{33}}{4}\end{align}\)
- step15: Rewrite:
\(x_{1}=-\frac{1+\sqrt{33}}{4},x_{2}=\frac{-1+\sqrt{33}}{4}\)
The solutions to the given equations are:
1. \( x-5=\frac{6}{x} \) has solutions \( x=-1 \) and \( x=6 \).
2. \( \frac{x^{2}-3x-7}{x^{2}-x-2}=\frac{x+2}{x+1}-1 \) has solution \( x=5 \).
3. \( \frac{2}{x}-\frac{x+1}{x+2}=1 \) has solutions \( x=-\frac{1+\sqrt{33}}{4} \) and \( x=\frac{-1+\sqrt{33}}{4} \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution