Question
upstudy study bank question image url

b. \( \frac{3 x}{5 x-15} \cdot \frac{x-3}{9 x^{2}} \)

Ask by Fowler Turnbull. in the United States
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{1}{15x} \).

Solution

To simplify the expression: \[ \frac{3x}{5x - 15} \cdot \frac{x - 3}{9x^{2}} \] **Step 1: Factor Where Possible** First, factor the denominators and numerators to identify common factors that can be canceled. 1. **Factor the denominator \(5x - 15\):** \[ 5x - 15 = 5(x - 3) \] 2. **Rewrite the original expression with the factored form:** \[ \frac{3x}{5(x - 3)} \cdot \frac{x - 3}{9x^{2}} \] **Step 2: Multiply the Fractions** Multiply the numerators together and the denominators together: \[ \frac{3x \cdot (x - 3)}{5(x - 3) \cdot 9x^{2}} = \frac{3x(x - 3)}{45x^{2}(x - 3)} \] **Step 3: Simplify by Cancelling Common Factors** 1. **Cancel the common factor \((x - 3)\) from the numerator and denominator:** \[ \frac{3x \cdot \cancel{(x - 3)}}{45x^{2} \cdot \cancel{(x - 3)}} = \frac{3x}{45x^{2}} \] 2. **Simplify the constants and the \(x\) terms:** \[ \frac{3x}{45x^{2}} = \frac{3}{45x} = \frac{1}{15x} \] (Here, \(3/45\) simplifies to \(1/15\), and \(x/x^{2}\) simplifies to \(1/x\)). **Final Simplified Expression:** \[ \frac{1}{15x} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Hey there, math enthusiast! Let's tackle this expression and simplify it step-by-step. First, factor out common terms where possible. Notice that the denominator \(5x - 15\) can be factored as \(5(x - 3)\). With this tidbit, the expression can be rewritten as: \[ \frac{3x}{5(x - 3)} \cdot \frac{x - 3}{9x^2} \] Now, you can see that \(x - 3\) cancels out! This simplifies the expression to: \[ \frac{3x}{5} \cdot \frac{1}{9x^2} = \frac{3}{45x} = \frac{1}{15x} \] And there you have it: the simplified form of the expression is \(\frac{1}{15x}\). Math magic at work! Now, before you rush off to celebrate your newfound mastery, remember: check for any restrictions! In this case, \(x\) cannot be 0 or 3, since that would make our original denominator undefined.

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Algebra Romania Jan 30, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy