Question
upstudy study bank question image url

When \( 2\left(\frac{3}{5} x+2 \frac{3}{4} y-\frac{1}{4} x-1 \frac{1}{2} y+3\right) \) is simplified, what is the resulting expression? \( 1 \frac{7}{10} x+2 \frac{1}{2} y+6 \) \( \frac{7}{10} x+2 \frac{1}{2} y+6 \) \( \frac{7}{10} x+8 \frac{1}{2} y+6 \) \( 1 \frac{7}{10} x+4 \frac{1}{4} y+3 \)

Ask by Wade Hart. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{7}{10} x + 2 \frac{1}{2} y + 6 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To simplify the expression \( 2\left(\frac{3}{5} x + 2 \frac{3}{4} y - \frac{1}{4} x - 1 \frac{1}{2} y + 3\right) \), we will first convert the mixed numbers into improper fractions where necessary and then combine like terms. 1. **Convert mixed numbers**: - \( 2 \frac{3}{4} y = \frac{8}{4} y + \frac{3}{4} y = \frac{11}{4} y \) - \( 1 \frac{1}{2} y = \frac{2}{2} y + \frac{1}{2} y = \frac{3}{2} y \) - \( 1 \frac{7}{10} x = \frac{10}{10} x + \frac{7}{10} x = \frac{17}{10} x \) Now, simplifying the expression inside the parentheses: \[ \frac{3}{5} x - \frac{1}{4} x = \frac{12}{20} x - \frac{5}{20} x = \frac{7}{20} x \] Next, simplify \( 2 \frac{3}{4} y - 1 \frac{1}{2} y + 3 \): \[ \frac{11}{4} y - \frac{3}{2} y + 3 = \frac{11}{4} y - \frac{6}{4} y + 3 = \frac{5}{4} y + 3 \] Now combine everything inside the parentheses: \[ 2\left(\frac{7}{20} x + \frac{5}{4} y + 3\right) \] Distributing the 2: \[ \frac{14}{20} x + \frac{10}{4} y + 6 = \frac{7}{10} x + \frac{5}{2} y + 6 \] Now we check the final answer against the options: - \( \frac{7}{10} x + 2 \frac{1}{2} y + 6 \) is equivalent to \( \frac{7}{10} x + \frac{5}{2} y + 6 \). - Therefore, the correct answer is: \[ \frac{7}{10} x + 2 \frac{1}{2} y + 6 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy