Question
\( 1 \leftarrow \quad \begin{array}{l}\text { Determine the following indefinite integral. } \\ \int(4 s+7)^{2} d s\end{array} \)
Ask by Lewis Schultz. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The integral of \((4s+7)^{2}\) with respect to \(s\) is \(\frac{(4s+7)^{3}}{12} + C\).
Solution
Calculate the integral \( \int(4s+7)^{2} ds \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \left(4s+7\right)^{2} ds\)
- step1: Use the substitution \(ds=\frac{1}{4} dt\) to transform the integral\(:\)
\(\int \left(4s+7\right)^{2}\times \frac{1}{4} dt\)
- step2: Simplify:
\(\int \frac{\left(4s+7\right)^{2}}{4} dt\)
- step3: Use the substitution \(t=4s+7\) to transform the integral\(:\)
\(\int \frac{t^{2}}{4} dt\)
- step4: Rewrite the expression:
\(\int \frac{1}{4}t^{2} dt\)
- step5: Use properties of integrals:
\(\frac{1}{4}\times \int t^{2} dt\)
- step6: Evaluate the integral:
\(\frac{1}{4}\times \frac{t^{2+1}}{2+1}\)
- step7: Simplify:
\(\frac{1}{4}\times \frac{t^{3}}{3}\)
- step8: Multiply the terms:
\(\frac{t^{3}}{4\times 3}\)
- step9: Multiply the terms:
\(\frac{t^{3}}{12}\)
- step10: Substitute back:
\(\frac{\left(4s+7\right)^{3}}{12}\)
- step11: Add the constant of integral C:
\(\frac{\left(4s+7\right)^{3}}{12} + C, C \in \mathbb{R}\)
The indefinite integral of \((4s+7)^{2}\) with respect to \(s\) is \(\frac{(4s+7)^{3}}{12} + C\), where \(C\) is an arbitrary constant.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To solve the integral \( \int(4s+7)^{2} \, ds \), we can use the power rule. First, expand the integrand: \[ (4s + 7)^2 = 16s^2 + 56s + 49. \] Now, we integrate term by term: \[ \int(16s^2 + 56s + 49) \, ds = \frac{16}{3}s^3 + 28s^2 + 49s + C, \] where \( C \) is the constant of integration. So, the final answer is: \[ \frac{16}{3}s^3 + 28s^2 + 49s + C. \]