A tensile test of a certain material provided the following data. Calculate the percentage reduction in area. Initial diameter \( =12 \mathrm{~mm} \) Initial gauge length \( =50.0 \mathrm{~mm} \) Final diameter \( =10.5 \mathrm{~mm} \) Final gauge length \( =60.2 \mathrm{~mm} \) A) \( 28.3 \% \) (B) \( 23.4 \% \) (C) \( 36.2 \% \) (D) \( 40.6 \% \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To calculate the percentage reduction in area, we first need to find the initial and final cross-sectional areas. The area can be computed using the formula for the area of a circle: \( A = \pi \times \left(\frac{d}{2}\right)^2 \). 1. **Initial area** \( A_i \): \[ A_i = \pi \times \left(\frac{12\, \text{mm}}{2}\right)^2 = \pi \times (6\, \text{mm})^2 = 36\pi \, \text{mm}^2 \] 2. **Final area** \( A_f \): \[ A_f = \pi \times \left(\frac{10.5\, \text{mm}}{2}\right)^2 = \pi \times (5.25\, \text{mm})^2 = 27.5625\pi \, \text{mm}^2 \] 3. **Percentage reduction in area** is calculated using the formula: \[ \text{Percentage Reduction} = \left(\frac{A_i - A_f}{A_i}\right) \times 100\% \] \[ = \left(\frac{36\pi - 27.5625\pi}{36\pi}\right) \times 100\% = \left(\frac{8.4375\pi}{36\pi}\right) \times 100\% = \left(\frac{8.4375}{36}\right) \times 100\% \approx 23.4\% \] So, the correct answer is (B) \( 23.4\% \).