Question
Subtract. \( \left(4 y^{2}-9 y+8\right)-\left(8 y^{2}-9 y+7\right) \) \( \left(4 y^{2}-9 y+8\right)-\left(8 y^{2}-9 y+7\right)=\square \) (Simplify your answer. Do not factor.)
Ask by Olson Chadwick. in the United States
Jan 27,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\(-4y^{2} + 1\)
Solution
To subtract the two polynomials, follow these steps:
\[
\left(4 y^{2} - 9 y + 8\right) - \left(8 y^{2} - 9 y + 7\right)
\]
1. Distribute the negative sign to the second polynomial:
\[
4 y^{2} - 9 y + 8 - 8 y^{2} + 9 y - 7
\]
2. Combine like terms:
- \(4 y^{2} - 8 y^{2} = -4 y^{2}\)
- \(-9 y + 9 y = 0 y\) (these terms cancel out)
- \(8 - 7 = 1\)
3. Putting it all together:
\[
-4 y^{2} + 1
\]
**Final Answer:**
\(-4y^{2} + 1\)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To subtract the expressions, start by distributing the negative sign across the second set of parentheses: \[ (4y^2 - 9y + 8) - (8y^2 - 9y + 7) = 4y^2 - 9y + 8 - 8y^2 + 9y - 7 \] Now, combine like terms: 1. For the \(y^2\) terms: \(4y^2 - 8y^2 = -4y^2\) 2. For the \(y\) terms: \(-9y + 9y = 0y\) (they cancel out) 3. For the constant terms: \(8 - 7 = 1\) Putting it all together, we have: \[ -4y^2 + 0y + 1 = -4y^2 + 1 \] So the final simplified expression is: \[ \left(4 y^{2}-9 y+8\right)-\left(8 y^{2}-9 y+7\right) = -4y^2 + 1 \]