Find \( A+B \) \( A=\left[\begin{array}{ll}6 & 2 \\ 5 & 4\end{array}\right] B=\left[\begin{array}{rr}-9 & 8 \\ 6 & -4\end{array}\right] \) \( A+B=\square \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find \( A + B \), we will add the corresponding elements of matrices \( A \) and \( B \). Given: \[ A = \left[\begin{array}{ll} 6 & 2 \\ 5 & 4 \end{array}\right], \quad B = \left[\begin{array}{rr} -9 & 8 \\ 6 & -4 \end{array}\right] \] Now, calculating \( A + B \): - For the first row and first column: \( 6 + (-9) = 6 - 9 = -3 \) - For the first row and second column: \( 2 + 8 = 10 \) - For the second row and first column: \( 5 + 6 = 11 \) - For the second row and second column: \( 4 + (-4) = 4 - 4 = 0 \) Putting it all together: \[ A + B = \left[\begin{array}{ll} -3 & 10 \\ 11 & 0 \end{array}\right] \] Thus, \( A + B = \left[\begin{array}{ll} -3 & 10 \\ 11 & 0 \end{array}\right] \).