Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \begin{array}{lll}\tan \alpha=-\frac{5}{12}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \\ \begin{array}{lll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta)\end{array} \quad \text { (d) } \tan (\alpha-\beta) \\ \text { (a) } \sin (\alpha+\beta)=\frac{5 \sqrt{3}-12}{26} \\ \text { (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) } \\ \text { (b) } \cos (\alpha+\beta)=\frac{-12 \sqrt{3}-5}{26} & \text { (Simplify your answer, ineluding any radicals. Use integers or fractions for any numbers in the expression.) } \\ \text { (c) sin }(\alpha-\beta)=\square & \text { (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) }\end{array} \]

Ask by Barber Sandoval. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sin (\alpha - \beta) = \frac{12 + 5\sqrt{3}}{26} \]

Solution

To find \(\sin(\alpha - \beta)\), we'll use the sine difference identity: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] **Given:** - \(\tan \alpha = -\frac{5}{12}\) with \(\frac{\pi}{2} < \alpha < \pi\) (Quadrant II) - \(\cos \beta = \frac{\sqrt{3}}{2}\) with \(0 < \beta < \frac{\pi}{2}\) (Quadrant I) **Step 1: Determine \(\sin \alpha\) and \(\cos \alpha\)** Since \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{5}{12}\), we can consider: - Opposite side (relative to \(\alpha\)) = 5 - Adjacent side = -12 (negative because \(\alpha\) is in Quadrant II) - Hypotenuse \(h = \sqrt{5^2 + 12^2} = 13\) Thus: \[ \sin \alpha = \frac{5}{13}, \quad \cos \alpha = -\frac{12}{13} \] **Step 2: Determine \(\sin \beta\)** Given \(\cos \beta = \frac{\sqrt{3}}{2}\) and \(\beta\) is in Quadrant I: \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \frac{3}{4}} = \frac{1}{2} \] **Step 3: Apply the Sine Difference Identity** \[ \sin(\alpha - \beta) = \left(\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{12}{13}\right) \left(\frac{1}{2}\right) \] \[ = \frac{5\sqrt{3}}{26} + \frac{12}{26} \] \[ = \frac{12 + 5\sqrt{3}}{26} \] **Final Answer:** \[ \sin(\alpha - \beta) = \frac{12 + 5\sqrt{3}}{26} \] **Answer:** Problem (c) Answer \[ \sin (\alpha-\beta) = \frac{12 + 5\,\sqrt{3}}{26} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the values of \(\sin(\alpha-\beta)\) and \(\tan(\alpha-\beta)\), we first need to determine the sine and cosine of \(\alpha\) based on the given \(\tan \alpha = -\frac{5}{12}\). Since \(\alpha\) is in the second quadrant (\(\frac{\pi}{2}<\alpha<\pi\)), we can use the Pythagorean identity to find \(\sin \alpha\) and \(\cos \alpha\). Using \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\), we have: \[ \sin \alpha = -5k \quad \text{and} \quad \cos \alpha = 12k \] for some \(k\). Using the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ (-5k)^2 + (12k)^2 = 1 \implies 25k^2 + 144k^2 = 1 \implies 169k^2 = 1 \implies k^2 = \frac{1}{169} \implies k = \frac{1}{13} \] Thus: \[ \sin \alpha = -\frac{5}{13} \quad \text{(negative in the second quadrant)} \quad \text{and} \quad \cos \alpha = -\frac{12}{13} \quad \text{(negative in the second quadrant)}. \] Next, for \(\beta\): Since \(\cos \beta = \frac{\sqrt{3}}{2}\) and \(0 < \beta < \frac{\pi}{2}\), we know: \[ \sin \beta = \sqrt{1 - \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \] Now, we can calculate \(\sin(\alpha - \beta)\): \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting the known values: \[ \sin(\alpha - \beta) = \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{12}{13}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{5\sqrt{3}}{26} + \frac{12}{26} = \frac{12 - 5\sqrt{3}}{26} \] Now, for \(\tan(\alpha - \beta)\): \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta} \] Calculating \(\cos(\alpha - \beta)\): \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Substituting: \[ = \left(-\frac{12}{13}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{5}{13}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{12\sqrt{3}}{26} - \frac{5}{26} = -\frac{12\sqrt{3} + 5}{26} \] Finally, combining everything: \[ \tan(\alpha - \beta) = \frac{\frac{12 - 5\sqrt{3}}{26}}{-\frac{12\sqrt{3} + 5}{26}} = \frac{12 - 5\sqrt{3}}{-(12\sqrt{3} + 5)} = -\frac{12 - 5\sqrt{3}}{12\sqrt{3} + 5} \] So the final answers are: \[ \text{(c) } \sin(\alpha - \beta) = \frac{12 - 5\sqrt{3}}{26} \] \[ \text{(d) } \tan(\alpha - \beta) = -\frac{12 - 5\sqrt{3}}{12\sqrt{3} + 5}

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy