Question
upstudy study bank question image url

Use the intercepts to graph the equation. \( x+3 y=6 \)

Ask by Maxwell Hall. in the United States
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

To graph the equation \( x + 3y = 6 \), find the x-intercept at \( (6, 0) \) and the y-intercept at \( (0, 2) \). Plot these points and draw a straight line through them.

Solution

To graph the equation \( x + 3y = 6 \) using its intercepts, follow these steps: ### 1. Find the **x-intercept** The **x-intercept** occurs where the graph crosses the x-axis. At this point, the value of \( y \) is **0**. **Steps:** - Set \( y = 0 \) in the equation: \[ x + 3(0) = 6 \implies x = 6 \] - **x-intercept:** \( (6, 0) \) ### 2. Find the **y-intercept** The **y-intercept** occurs where the graph crosses the y-axis. At this point, the value of \( x \) is **0**. **Steps:** - Set \( x = 0 \) in the equation: \[ 0 + 3y = 6 \implies y = 2 \] - **y-intercept:** \( (0, 2) \) ### 3. Plot the Intercepts - Plot the **x-intercept** at \( (6, 0) \). - Plot the **y-intercept** at \( (0, 2) \). ### 4. Draw the Graph - Draw a straight line passing through the two plotted points \( (6, 0) \) and \( (0, 2) \). - This line represents the equation \( x + 3y = 6 \). ### 5. Graphical Representation Below is a simple graphical representation of the line: ``` y | 2 | * | | | | 0 |------------------------ x 0 6 ``` - The point \( (0, 2) \) is the **y-intercept** marked with an asterisk (*). - The point \( (6, 0) \) is the **x-intercept**. - The straight line connects these two intercepts. ### 6. Slope-Intercept Form (Optional) For additional insight, you can rewrite the equation in **slope-intercept form** \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. **Steps:** \[ x + 3y = 6 \\ 3y = -x + 6 \\ y = -\frac{1}{3}x + 2 \] - **Slope (\( m \))**: \( -\frac{1}{3} \) - **y-intercept (\( b \))**: \( 2 \) This form confirms that the line crosses the y-axis at \( (0, 2) \) and has a slope of \( -\frac{1}{3} \), meaning it decreases by 1 unit in \( y \) for every 3 units increase in \( x \). ### Summary - **x-intercept:** \( (6, 0) \) - **y-intercept:** \( (0, 2) \) - **Slope-intercept form:** \( y = -\frac{1}{3}x + 2 \) - **Graph:** A straight line passing through \( (6, 0) \) and \( (0, 2) \) By following these steps, you can accurately graph the equation \( x + 3y = 6 \) using its intercepts.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To graph the equation \( x + 3y = 6 \), start by finding the intercepts. For the x-intercept, set \( y = 0 \): this gives \( x = 6 \), so the point is \( (6, 0) \). For the y-intercept, set \( x = 0 \): that results in \( 3y = 6 \), leading to \( y = 2 \), giving the point \( (0, 2) \). Plot these two points on the graph, and then draw a line through them to complete your representation! To make your graph neat, you can also calculate additional points by substituting other values of \( x \) or \( y \). For example, if you substitute \( x = 3 \), you find \( y = 1 \), yielding the point \( (3, 1) \). Adding more points ensures that your line is accurate and visually appealing! Don’t forget to label your axes and indicate the scale for clarity. Happy graphing!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy