Question
upstudy study bank question image url

Simplify the following expression. \[ \left(-\frac{1}{11}\right)^{-1} \]

Ask by Bowers Carrillo. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The expression simplifies to \(-11\).

Solution

Calculate or simplify the expression \( (-\frac{1}{11})^{-1} \). Calculate the value by following steps: - step0: Calculate: \(\left(-\frac{1}{11}\right)^{-1}\) - step1: Transform the expression: \(-11\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \(\left(-\frac{1}{11}\right)^{-1}\), we use the property of exponents that states \(a^{-1} = \frac{1}{a}\). Therefore, we can rewrite the expression as: \[ \left(-\frac{1}{11}\right)^{-1} = \frac{1}{-\frac{1}{11}} \] Now, to divide by a fraction, we multiply by its reciprocal: \[ \frac{1}{-\frac{1}{11}} = 1 \cdot \left(-11\right) = -11 \] Thus, the simplified expression is: \[ \boxed{-11} \]

Related Questions

Exercise 1.7 1. Expand: a) \( \sum_{k=1}^{5} k^{2} \) b) \( \sum_{k=1}^{6} \frac{k}{k+2} \) c) \( \sum_{r=2}^{5} 2^{r} \) d) \( \sum_{r=2}^{8}(-1)^{r} \) e) \( \sum_{k=3}^{9}(-3)(5)^{k} \) f) \( \sum_{k=0}^{12}(7-2 k) \) 2. Write in sigma notation: a) \( 1+2+3+4+5+6 \) b) \( 1+4+9+16+25+36+49 \) (c) \( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{10} \) d) \( \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots+\frac{20}{21} \) e) \( 1.2+2.3+3.4+\ldots+ \) to \( n \) terms. f) \( 3+3+3+\ldots+ \) to \( n \) terms. g) \( a+a+a+\ldots+ \) to \( n \) terms. h) \( p^{2}+3 p^{4}+5 p^{6}+\ldots+ \) to \( n \) terms. i) \( x^{n}+x^{n-1} y+x^{n-2} y^{2}+x^{n-3} y^{3}+\ldots+x y^{n-1}+y^{n} \) j) \( x+2 x^{2}+6 x^{3}+24 x^{4}+120 x^{5}+\ldots \) to \( n \) terms. 3. Determine \( n \) in each series: a) \( \sum_{r=1}^{n}\left(\frac{5 r}{4}\right)=150 \) b) \( \sum_{r=3}^{n}(6 r-1)=2225 \) c) \( \sum_{r=1}^{n}(22-3 r)=44 \) d) \( \sum_{k=1}^{n} 3(2)^{k-1}=381 \) e) \( \sum_{k=1}^{n} \frac{1}{5}(3)^{k-1}=24 \frac{1}{5} \) f) \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-15 \frac{3}{4} \) g) \( \sum_{k=1}^{n} 8(1)^{k-1}=800 \) 4. Evaluate: a) \( \sum_{r=1}^{13}(3+2 r) \) b) \( \sum_{r=5}^{12}(2 r-5) \) c) \( \sum_{n=1}^{60} n x^{2} \) d) \( \sum_{r=0}^{13} 6\left(-\frac{1}{3}\right)^{r-1} 4,5 \) e) \( \sum_{x=1}^{5} \frac{1}{5}(-5)^{x-1} \) 5. a) What is the greatest number of terms for which \( \sum_{r=1}^{n}(r+1)<54 \) ? b) What is the least number of terms for which \( \sum_{r=1}^{n}(2 r-10)>22 \) ? 12 6. The sequence of triangular numbers is given by \( T_{1}=1 \) and \( T_{k+1}=T_{k}+(k+1) \)

Latest Pre Algebra Questions

Exercise 1.7 1. Expand: a) \( \sum_{k=1}^{5} k^{2} \) b) \( \sum_{k=1}^{6} \frac{k}{k+2} \) c) \( \sum_{r=2}^{5} 2^{r} \) d) \( \sum_{r=2}^{8}(-1)^{r} \) e) \( \sum_{k=3}^{9}(-3)(5)^{k} \) f) \( \sum_{k=0}^{12}(7-2 k) \) 2. Write in sigma notation: a) \( 1+2+3+4+5+6 \) b) \( 1+4+9+16+25+36+49 \) (c) \( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{10} \) d) \( \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots+\frac{20}{21} \) e) \( 1.2+2.3+3.4+\ldots+ \) to \( n \) terms. f) \( 3+3+3+\ldots+ \) to \( n \) terms. g) \( a+a+a+\ldots+ \) to \( n \) terms. h) \( p^{2}+3 p^{4}+5 p^{6}+\ldots+ \) to \( n \) terms. i) \( x^{n}+x^{n-1} y+x^{n-2} y^{2}+x^{n-3} y^{3}+\ldots+x y^{n-1}+y^{n} \) j) \( x+2 x^{2}+6 x^{3}+24 x^{4}+120 x^{5}+\ldots \) to \( n \) terms. 3. Determine \( n \) in each series: a) \( \sum_{r=1}^{n}\left(\frac{5 r}{4}\right)=150 \) b) \( \sum_{r=3}^{n}(6 r-1)=2225 \) c) \( \sum_{r=1}^{n}(22-3 r)=44 \) d) \( \sum_{k=1}^{n} 3(2)^{k-1}=381 \) e) \( \sum_{k=1}^{n} \frac{1}{5}(3)^{k-1}=24 \frac{1}{5} \) f) \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-15 \frac{3}{4} \) g) \( \sum_{k=1}^{n} 8(1)^{k-1}=800 \) 4. Evaluate: a) \( \sum_{r=1}^{13}(3+2 r) \) b) \( \sum_{r=5}^{12}(2 r-5) \) c) \( \sum_{n=1}^{60} n x^{2} \) d) \( \sum_{r=0}^{13} 6\left(-\frac{1}{3}\right)^{r-1} 4,5 \) e) \( \sum_{x=1}^{5} \frac{1}{5}(-5)^{x-1} \) 5. a) What is the greatest number of terms for which \( \sum_{r=1}^{n}(r+1)<54 \) ? b) What is the least number of terms for which \( \sum_{r=1}^{n}(2 r-10)>22 \) ? 12 6. The sequence of triangular numbers is given by \( T_{1}=1 \) and \( T_{k+1}=T_{k}+(k+1) \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy