1. Compute each of the following limits. \( \begin{array}{llll}\text { a) } \lim _{x \rightarrow \infty} 3 x^{4} & \text { c) } \lim _{x \rightarrow \infty}\left(-2 x^{5}\right) & \text { e) } \lim _{x \rightarrow \infty}\left(-\frac{2}{3} x^{6}\right) & \text { g) } \lim _{x \rightarrow \infty} 4 x^{3} \\ \text { b) } \lim _{x \rightarrow-\infty} 3 x^{4} & \text { d) } \lim _{x \rightarrow-\infty}\left(-2 x^{5}\right) & \text { f) } \lim _{x \rightarrow-\infty}\left(-\frac{2}{3} x^{6}\right) & \text { h) } \lim _{x \rightarrow-\infty} 4 x^{3}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To compute each of the given limits, we can analyze the behavior of the polynomial functions as \( x \) approaches \( \infty \) or \( -\infty \). ### a) \( \lim _{x \rightarrow \infty} 3 x^{4} \) As \( x \) approaches infinity, \( 3x^{4} \) also approaches infinity. Therefore, the limit is: \[ \lim_{x \to \infty} 3 x^{4} = \infty \] ### b) \( \lim _{x \rightarrow -\infty} 3 x^{4} \) Since \( 3x^{4} \) is a polynomial of even degree, it approaches infinity as \( x \) approaches \( -\infty \): \[ \lim_{x \to -\infty} 3 x^{4} = \infty \] ### c) \( \lim _{x \rightarrow \infty} (-2 x^{5}) \) As \( x \) approaches infinity, \( -2x^{5} \) goes to negative infinity since the leading term is negative: \[ \lim_{x \to \infty} (-2 x^{5}) = -\infty \] ### d) \( \lim _{x \rightarrow -\infty} (-2 x^{5}) \) For \( x \) going to negative infinity, \( -2x^{5} \) becomes positive infinity because the negative lead of the term becomes positive: \[ \lim_{x \to -\infty} (-2 x^{5}) = \infty \] ### e) \( \lim _{x \rightarrow \infty} (-\frac{2}{3} x^{6}) \) As \( x \) goes to infinity, this limit approaches negative infinity due to the negative leading coefficient: \[ \lim_{x \to \infty} (-\frac{2}{3} x^{6}) = -\infty \] ### f) \( \lim _{x \rightarrow -\infty} (-\frac{2}{3} x^{6}) \) As \( x \) approaches negative infinity, \( -\frac{2}{3} x^{6} \) goes to positive infinity: \[ \lim_{x \to -\infty} (-\frac{2}{3} x^{6}) = \infty \] ### g) \( \lim _{x \rightarrow \infty} 4 x^{3} \) As \( x \) goes to infinity, this polynomial approaches infinity: \[ \lim_{x \to \infty} 4 x^{3} = \infty \] ### h) \( \lim _{x \rightarrow -\infty} 4 x^{3} \) For \( x \) approaching negative infinity, \( 4x^{3} \) approaches negative infinity: \[ \lim_{x \to -\infty} 4 x^{3} = -\infty \] In summary: \[ \begin{align*} \text{a)} & \quad \infty \\ \text{b)} & \quad \infty \\ \text{c)} & \quad -\infty \\ \text{d)} & \quad \infty \\ \text{e)} & \quad -\infty \\ \text{f)} & \quad \infty \\ \text{g)} & \quad \infty \\ \text{h)} & \quad -\infty \\ \end{align*} \]