Question
upstudy study bank question image url

1. Compute each of the following limits. \( \begin{array}{llll}\text { a) } \lim _{x \rightarrow \infty} 3 x^{4} & \text { c) } \lim _{x \rightarrow \infty}\left(-2 x^{5}\right) & \text { e) } \lim _{x \rightarrow \infty}\left(-\frac{2}{3} x^{6}\right) & \text { g) } \lim _{x \rightarrow \infty} 4 x^{3} \\ \text { b) } \lim _{x \rightarrow-\infty} 3 x^{4} & \text { d) } \lim _{x \rightarrow-\infty}\left(-2 x^{5}\right) & \text { f) } \lim _{x \rightarrow-\infty}\left(-\frac{2}{3} x^{6}\right) & \text { h) } \lim _{x \rightarrow-\infty} 4 x^{3}\end{array} \)

Ask by Carter Tyler. in the Philippines
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{align*} \text{a)}\ & \infty \\ \text{b)}\ & \infty \\ \text{c)}\ & -\infty \\ \text{d)}\ & \infty \\ \text{e)}\ & -\infty \\ \text{f)}\ & -\infty \\ \text{g)}\ & \infty \\ \text{h)}\ & -\infty \\ \end{align*} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To compute each of the given limits, we can analyze the behavior of the polynomial functions as \( x \) approaches \( \infty \) or \( -\infty \). ### a) \( \lim _{x \rightarrow \infty} 3 x^{4} \) As \( x \) approaches infinity, \( 3x^{4} \) also approaches infinity. Therefore, the limit is: \[ \lim_{x \to \infty} 3 x^{4} = \infty \] ### b) \( \lim _{x \rightarrow -\infty} 3 x^{4} \) Since \( 3x^{4} \) is a polynomial of even degree, it approaches infinity as \( x \) approaches \( -\infty \): \[ \lim_{x \to -\infty} 3 x^{4} = \infty \] ### c) \( \lim _{x \rightarrow \infty} (-2 x^{5}) \) As \( x \) approaches infinity, \( -2x^{5} \) goes to negative infinity since the leading term is negative: \[ \lim_{x \to \infty} (-2 x^{5}) = -\infty \] ### d) \( \lim _{x \rightarrow -\infty} (-2 x^{5}) \) For \( x \) going to negative infinity, \( -2x^{5} \) becomes positive infinity because the negative lead of the term becomes positive: \[ \lim_{x \to -\infty} (-2 x^{5}) = \infty \] ### e) \( \lim _{x \rightarrow \infty} (-\frac{2}{3} x^{6}) \) As \( x \) goes to infinity, this limit approaches negative infinity due to the negative leading coefficient: \[ \lim_{x \to \infty} (-\frac{2}{3} x^{6}) = -\infty \] ### f) \( \lim _{x \rightarrow -\infty} (-\frac{2}{3} x^{6}) \) As \( x \) approaches negative infinity, \( -\frac{2}{3} x^{6} \) goes to positive infinity: \[ \lim_{x \to -\infty} (-\frac{2}{3} x^{6}) = \infty \] ### g) \( \lim _{x \rightarrow \infty} 4 x^{3} \) As \( x \) goes to infinity, this polynomial approaches infinity: \[ \lim_{x \to \infty} 4 x^{3} = \infty \] ### h) \( \lim _{x \rightarrow -\infty} 4 x^{3} \) For \( x \) approaching negative infinity, \( 4x^{3} \) approaches negative infinity: \[ \lim_{x \to -\infty} 4 x^{3} = -\infty \] In summary: \[ \begin{align*} \text{a)} & \quad \infty \\ \text{b)} & \quad \infty \\ \text{c)} & \quad -\infty \\ \text{d)} & \quad \infty \\ \text{e)} & \quad -\infty \\ \text{f)} & \quad \infty \\ \text{g)} & \quad \infty \\ \text{h)} & \quad -\infty \\ \end{align*} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy