Question
upstudy study bank question image url

Find \( f^{\prime}(x) \) for \( f(x)=-\frac{3}{4 x}-7 x^{-4}-\sqrt[3]{x} \)

Ask by Savage Elliott. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f'(x) = \frac{3}{4x^2} + \frac{28}{x^5} - \frac{1}{3x^{2/3}} \)

Solution

To find the derivative \( f'(x) \) of the function \[ f(x) = -\frac{3}{4x} - 7x^{-4} - \sqrt[3]{x}, \] we'll differentiate each term separately. 1. **First Term: \( -\frac{3}{4x} \)** Rewrite the term using a negative exponent: \[ -\frac{3}{4x} = -\frac{3}{4} x^{-1}. \] Differentiate: \[ \frac{d}{dx} \left( -\frac{3}{4} x^{-1} \right) = -\frac{3}{4} \cdot (-1) x^{-2} = \frac{3}{4} x^{-2}. \] 2. **Second Term: \( -7x^{-4} \)** Differentiate: \[ \frac{d}{dx} \left( -7x^{-4} \right) = -7 \cdot (-4) x^{-5} = 28 x^{-5}. \] 3. **Third Term: \( -\sqrt[3]{x} \)** Rewrite the term using a fractional exponent: \[ -\sqrt[3]{x} = -x^{1/3}. \] Differentiate: \[ \frac{d}{dx} \left( -x^{1/3} \right) = -\frac{1}{3} x^{-2/3}. \] Combining all the derivatives, we get: \[ f'(x) = \frac{3}{4} x^{-2} + 28 x^{-5} - \frac{1}{3} x^{-2/3}. \] Alternatively, this can be written using positive exponents in the denominators: \[ f'(x) = \frac{3}{4x^2} + \frac{28}{x^5} - \frac{1}{3x^{2/3}}. \] **Final Answer:** \[ f\,'(x) = \frac{3}{4\,x^{2}} + \frac{28}{x^{5}} - \frac{1}{3\,x^{\,2/3}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find \( f^{\prime}(x) \) for the function \( f(x) = -\frac{3}{4 x} - 7 x^{-4} - \sqrt[3]{x} \), we will differentiate each term separately. 1. The derivative of \( -\frac{3}{4 x} \) can be rewritten as \( -\frac{3}{4} x^{-1} \). Differentiating gives: \[ \frac{d}{dx} \left( -\frac{3}{4} x^{-1} \right) = -\frac{3}{4} \cdot (-1) x^{-2} = \frac{3}{4 x^2} \] 2. For the term \( -7 x^{-4} \), the derivative is: \[ \frac{d}{dx} \left( -7 x^{-4} \right) = -7 \cdot (-4) x^{-5} = 28 x^{-5} \] 3. The derivative of \( -\sqrt[3]{x} \) (which is \( -x^{1/3} \)) is: \[ \frac{d}{dx} \left( -x^{1/3} \right) = -\frac{1}{3} x^{-2/3} \] Now we can combine these results to find \( f^{\prime}(x) \): \[ f^{\prime}(x) = \frac{3}{4 x^2} + 28 x^{-5} - \frac{1}{3} x^{-2/3} \] Thus, the final result is: \[ f^{\prime}(x) = \frac{3}{4 x^2} + \frac{28}{x^5} - \frac{1}{3} x^{-2/3} \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy