Question
upstudy study bank question image url

337. Točka \( M \) leži na daljici \( A B \) tako, da je \( |A M|:|A B|=2: 5 \). Zapišite komponente krajevnega vektorja točke \( M \), če je \( A(3,-2,1) \) in \( B(-2,8,-4) \).

Ask by Mcguire Chen. in Slovenia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The coordinates of point \( M \) are \( (1, 2, -1) \).

Solution

To določiti komponente krajevnega vektorja točke \( M \), sledimo naslednjim korakom: 1. **Koordinate točk \( A \) in \( B \):** \[ A(3, -2, 1) \quad \text{in} \quad B(-2, 8, -4) \] 2. **Izračun razlike v koordinatah \( B - A \):** \[ B - A = (-2 - 3, 8 - (-2), -4 - 1) = (-5, 10, -5) \] 3. **Uporaba razmerja \(|A M| : |A B| = 2 : 5\):** To pomeni, da točka \( M \) deli daljico \( A B \) v razmerju \( 2 : 3 \) (ker \( 2 + 3 = 5 \)). 4. **Izračun komponente vektorja \( A M \):** \[ \vec{A M} = \frac{2}{5} \cdot (B - A) = \frac{2}{5} \cdot (-5, 10, -5) = (-2, 4, -2) \] 5. **Določitev koordinat točke \( M \):** \[ M = A + \vec{A M} = (3, -2, 1) + (-2, 4, -2) = (1, 2, -1) \] Torej so komponente krajevnega vektorja točke \( M \): \[ M(1,\ 2,\ -1) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Najprej izračunamo vektor \( \vec{AB} \), ki ga dobimo tako, da od koordinates točke \( B \) odštejemo koordinate točke \( A \): \[ \vec{AB} = B - A = (-2, 8, -4) - (3, -2, 1) = (-2 - 3, 8 - (-2), -4 - 1) = (-5, 10, -5). \] Nato izračunamo dolžino daljice \( |AB| \): \[ |AB| = \sqrt{(-5)^2 + (10)^2 + (-5)^2} = \sqrt{25 + 100 + 25} = \sqrt{150} = 5\sqrt{6}. \] Ker je razmerje \( |AM|:|AB| = 2:5 \), izračunamo dolžino segmenta \( |AM| \): \[ |AM| = \frac{2}{5} |AB| = \frac{2}{5} \cdot 5\sqrt{6} = 2\sqrt{6}. \] Točka \( M \) leži na daljici \( AB \), tako da je njen krajevni vektor podan z izrazom: \[ \vec{M} = \vec{A} + t \cdot \vec{AB}, \] kjer \( t = \frac{|AM|}{|AB|} = \frac{2/5}{1} = \frac{2}{5} \). Malce izračunamo: \[ \vec{M} = (3, -2, 1) + \frac{2}{5} \cdot (-5, 10, -5). \] Sedaj izračunamo komponente: \[ \vec{M} = (3, -2, 1) + (-2, 4, -2) = (3 - 2, -2 + 4, 1 - 2) = (1, 2, -1). \] Torej so komponente krajevnega vektorja točke \( M \): \[ M(1, 2, -1). \]

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy