Question
upstudy study bank question image url

c) \( \left\{\begin{array}{l}y \geq 3 x-1 \\ 2 x+2 y<4 \\ x>2\end{array}\right. \)

Ask by Bowen Wood. in Spain
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

No hay solución que cumpla todas las desigualdades dadas.

Solution

Vamos a analizar el sistema de desigualdades dado: \[ \begin{cases} y \geq 3x - 1 \\ 2x + 2y < 4 \\ x > 2 \end{cases} \] **Paso 1: Simplificar la segunda desigualdad** Dividimos la segunda desigualdad por 2 para simplificar: \[ x + y < 2 \quad \Rightarrow \quad y < 2 - x \] **Paso 2: Analizar las restricciones impuestas por \( x > 2 \)** Dado que \( x > 2 \): \[ y < 2 - x \quad \Rightarrow \quad y < 2 - (2) = 0 \quad \Rightarrow \quad y < 0 \] **Paso 3: Evaluar la primera desigualdad con \( x > 2 \)** Sustituyendo \( x > 2 \) en la primera desigualdad: \[ y \geq 3x - 1 \quad \Rightarrow \quad y \geq 3(2) - 1 = 6 - 1 = 5 \] **Paso 4: Contradicción de las desigualdades de \( y \)** Tenemos que: \[ y \geq 5 \quad \text{y} \quad y < 0 \] Estas dos condiciones son contradictorias, ya que no existe ningún valor de \( y \) que sea simultáneamente mayor o igual a 5 y menor que 0. **Conclusión:** No existe solución que satisfaga simultáneamente todas las desigualdades del sistema. Por lo tanto, el sistema de desigualdades no tiene solución.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s dive into a little historical context! The concept of systems of inequalities, like the one you’ve shared, was pivotal in the development of linear programming during the 20th century. The origins trace back to the work of mathematicians like Georgy B. Dantzig, who formulated linear programming techniques to optimize resource allocation during and after World War II. This mathematical tool transformed industries by enabling optimal decision-making based on constraints! Now, when it comes to real-world applications, systems of inequalities are everywhere! Imagine you’re a manager in a factory determining how many of two products to produce, given constraints like budget, labor hours, and materials. By graphing the inequalities, you can visualize feasible production plans and maximize profit while staying within the operational limits. It's like having a superpower for effective resource-management decisions!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy