Question
upstudy study bank question image url

Timoteo needs to fix an issue in the mixing chamber. What's he most likely working on? A) A dual-duct system B) A central-fan system C) A heating plant D) A cooling plant

Ask by Bradley Sullivan. in the United States
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Timoteo is most likely working on a dual-duct system.

Solution

Timoteo is most likely working on: **A) A dual-duct system** **Explanation:** A dual-duct system in HVAC (Heating, Ventilation, and Air Conditioning) involves two separate ducts—one delivering heated air and the other delivering cooled air. These two air streams are then combined or mixed in a mixing chamber to achieve the desired temperature within a space. If there's an issue in the mixing chamber, it typically pertains to how these two air streams are being balanced or combined. **Other Options:** - **B) A central-fan system:** Generally involves a central fan distributing air but doesn't specifically focus on mixing different air streams. - **C) A heating plant:** Primarily deals with generating and distributing heat, not necessarily involving a mixing chamber. - **D) A cooling plant:** Focuses on cooling processes, which may not require a mixing chamber unless integrated with a dual-duct approach. Therefore, the presence of a mixing chamber strongly indicates that Timoteo is working on a dual-duct system. **Answer:** A) A dual-duct system

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Timoteo is most likely working on option A, a dual-duct system. This type of system involves both heated and cooled air being distributed through separate ducts to maintain desired temperature levels in different areas. Fixing issues here may often involve balancing airflows or addressing problems with the mixing of these two air streams. Additionally, fixing a mixing chamber often means checking for leaks or blockages, and ensuring that damper systems are functioning properly. Improper mixing can lead to inefficiencies and discomfort in a space, so it’s crucial to keep everything in balance for optimal system performance.

Related Questions

ข้อ 1 พื้นฐานการถ่ายโอนความร้อนและสมการการนำความร้อน มี 3 ข้อย่อย (10 คะแนน) 1.1อธิบายความแตกต่างระหว่างปรากฏการณ์การถ่ายโอนความร้อนแบบการนำความร้อน การพาความ ร้อนและการแผ่รังสี (2.5 คะแนน) 1.2 กำหนดสมการการนำความร้อนของตัวกลางมาให้ในรูปง่ายที่สุดคือ (2.5 คะแนน) \[ \frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial \tau}{\partial r}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{g}=0 \] (ก) เป็นสมการการนำความร้อนรของตัวกลางรูปทรงใด (ข) การถ่ายโอนความร้อนเป็นแบบสภาวะคงที่ หรือทรานเซียนท์ (ค) การถ่ายโอนความร้อนเป็นแบบหนึ่ง สอง หรือสามมิติ (ง) มีการเกิดความร้อนในตัวกลางหรือไม่ (จ) สภาพการนำความร้อนของตัวกลางคงที่หรือแปรผัน 1
Engineering Thailand Jan 30, 2025
ข้อ 4 การพาความร้อนแบบบังคับ ( 25 คะแนน) 4. ณ ประเทสญี่ปุ่นระหว่างที่วิศวกรเคมีเดินตรวจสอบโรงงานพบว่าท่อไอน้ำที่มีความยาว 12 m และเส้น ผ่านศูนย์กลาง 10 cm ถูกปล่อยให้สัมผัสกับอากาศภายนอกโดยตรง การวัดอุณหภูมิแสดงให้เห็นว่า อุณหภูมิเฉลี่ยของพื้นผิวด้านนอกของท่อไอน้ำอยู่ที่ \( 75^{\circ} \mathrm{C} \) ขณะที่อุณหภูมิของอากาศโดยรอบอยู่ที่ \( 5^{\circ} \mathrm{C}\left(\mathrm{T}_{\alpha}\right) \) นอกจากนี้ยังมีลมเบาพัดผ่านบริเวณนั้นด้วยความเร็ว \( 10 \mathrm{~km} / \mathrm{hr} \) ค่าการแผ่รังสี ( \( \mathcal{E} \), emissivity) ของพื้นผิว ด้านนอกของท่อเท่ากับ 0.8 และอุณหภูมิเฉลี่ยของพื้นผิวที่ล้อมรอบท่อรวมถึงท้องฟ้า อยู่ที่ประมาณ \( 0^{\circ} \mathrm{C} \) ( \( T_{\text {surr }} \) ) คำนวณ (ก) หาค่าสัมประสิทธิ์การพาความร้อน (10 คะแนน) (ข) อัตราการถ่ายโอนความร้อนจากท่อไอน้ำสู่ \( \left(\dot{Q}_{\text {total }}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {rad }}\right) \) (5 คะแนน) (ข) ปริมาณความร้อนที่สูญเสียไปจากไอน้ำใน 10 ชั่วโมง (5 คะแนน) (ค) เมื่อวิศวกรคำนวณ ข้อ ก และ ข แล้ว จึงตัดสินใจแก้ปัญหาด้วยการหุ้มฉนวน พบว่าสามารถลดการ สูญเสียความร้อนได้มากถึง \( 85 \% \) จงหาว่าวิศวกรคนนี้ประหยัดค่าแก็สให้โรงงานกี่ดอลลาร์ (\$) (5 คะแนน) ข้อมูลเพิ่มเติม ค่าใช้จ่ายสำหรับก๊าชธรรมชาติอยู่ที่ \( \$ 0.54 \) ต่อ 1 therm ( 1 therm \( =105,500 \mathrm{~kJ} \) ) 5
Engineering Thailand Jan 30, 2025
ข้อ 2 การนำความร้อนที่สภาวะคงที่ (10 คะแนน) น้ำร้อนอุณหภูมิ \( 90^{\circ} \mathrm{C} \) ไหลในท่อเหล็กหล่อ \( \left(\mathrm{k}=52 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right) \) ) ยาว 15 m เส้นผ่าศูนย์กลางภายในและ ภายนอกคือ \( D 1=4 \mathrm{~cm} \) และ \( D 2=4.6 \mathrm{~cm} \) ตามลำดับ ผิวภายนอกของท่อมีสภาพการแผ่รังสีเท่ากับ 0.7 ความร้อนสูญเสียให้กับอากาศล้อมรอบที่ \( 10^{\circ} \mathrm{C} \) โดยมีสัมประสิทธิ์การพาความร้อนคือ \( h_{2}=15 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \) กำหนดให้สัมประสิทธิ์การถ่ายโอนความร้อนภายในท่อคือ \( h_{1}=120 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \) โดยอุณหภูมิของท่อด้าน นอกเท่ากับ \( 80^{\circ} \mathrm{C} \) ให้นักศึกษาเขียนโครงข่ายความต้านทานความร้อน และสมการการถ่ายโอนความร้อนพร้อมทั้งสมการความ ต้านทานความร้อนแต่ละตัว (เขียนสมการ ไม่มีคำนวณ) 3
Engineering Thailand Jan 30, 2025

Latest Engineering Questions

ขข้อ 4 การพาความร้อนแบบบังคับ (25 คะแนน) 4. ณ ประเทสญี่ปุ่นระหว่างที่วิศวกรเคมีเดินตรวจสอบโรงงานพบว่าท่อไอน้ำที่มีความยาว 12 m และเส้น ผ่านศูนย์กลาง 10 cm ถูกปล่อยให้สัมผัสกับอากาศภายนอกโดยตรง การวัดอุณหภูมิแสดงให้เห็นว่า อุณหภูมิเฉลี่ยของพื้นผิวด้านนอกของท่อไอน้ำอยู่ที่ \( 75^{\circ} \mathrm{C} \) ขณะที่อุณหภูมิของอากาศโดยรอบอยู่ที่ \( 5^{\circ} \mathrm{C}\left(\mathrm{T}_{\alpha}\right) \) นอกจากนี้ยังมีลมเบาพัดผ่านบริเวณนั้นด้วยความเร็ว \( 10 \mathrm{~km} / \mathrm{hr} \) ค่าการแผ่รังสี ( \( \varepsilon \), emissivity) ของพื้นผิว ด้านนอกของท่อเท่ากับ 0.8 และอุณหภูมิเฉลี่ยของพื้นผิวที่ล้อมรอบท่อรวมถึงท้องฟ้า อยู่ที่ประมาณ \( 0^{\circ} \mathrm{C} \) ( \( \mathrm{T}_{\text {surr }} \) คำนวณ (ก) หาค่าสัมประสิทธิ์การพาความร้อน (10 คะแนน) (ข) อัตราการถ่ายโอนความร้อนจากท่อไอน้ำสู่ ( \( \left.\dot{Q}_{\text {total }}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {rad }}\right) \) (5 คะแนน) (ข) ปริมาณความร้อนที่สูญเสียไปจากไอน้ำใน 10 ชั่วโมง (5 คะแนน) (ค) เมื่อวิศวกรคำนวณ ข้อ ก และ ข แล้ว จึงตัดสินใจแก้ปัญหาด้วยการหุ้มฉนวน พบว่าสามารถลดการ สูญเสียความร้อนได้มากถึง \( 85 \% \) จงหาว่าวิศวกรคนนี้ประหยัดค่าแก็สให้โรงงานกี่ดอลลาร์ (\$) (5 คะแนน) ข้อมูลเพิ่มเติม ค่าใช้จ่ายสำหรับก๊าซธรรมชาติอยู่ที่ \$0.54 ต่อ 1 therm (1 therm = \( 105,500 \mathrm{kJ)} \)
Engineering Thailand Jan 30, 2025
ข้อ 4 การพาความร้อนแบบบังคับ (25 คะแนน) 4. ณ ประเทสญี่ปุ่นระหว่างที่วิศวกรเคมีเดินตรวจสอบโรงงานพบว่าท่อไอน้ำที่มีความยาว 12 m และเส้น ผ่านศูนย์กลาง 10 cm ถูกปล่อยให้สัมผัสกับอากาศภายนอกโดยตรง การวัดอุณหภูมิแสดงให้เห็นว่า อุณหภูมิเฉลี่ยของพื้นผิวด้านนอกของท่อไอน้ำอยู่ที่ \( 75^{\circ} \mathrm{C} \) ขณะที่อุณหภูมิของอากาศโดยรอบอยู่ที่ \( 5^{\circ} \mathrm{C}\left(\mathrm{T}_{\alpha}\right) \) นอกจากนี้ยังมีลมเบาพัดผ่านบริเวณนั้นด้วยความเร็ว \( 10 \mathrm{~km} / \mathrm{hr} \) ค่าการแผ่รังสี \( (\varepsilon \), , emissivity) ของพื่นผิว ด้านนอกของท่อเท่ากับ 0.8 และอุณหภูมิเฉลี่ยของพื้นผิวที่ล้อมรอบท่อรวมถึงท้องฟ้า อยู่ที่ประมาณ \( 0^{\circ} \mathrm{C} \) ( \( \left.\mathrm{T}_{\text {surr }}\right) \) คำนวณ (ก) หาค่าสัมประสิทธิ์การพาความร้อน (10 คะแนน) (ข) อัตราการถ่ายโอนความร้อนจากท่อไอน้ำสู่ ( \( \left.\dot{Q}_{\text {total }}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {rad }}\right) \) (5 คะแนน) (ข) ปริมาณความร้อนที่สูญเสียไปจากไอน้ำใน 10 ชั่วโมง (5 คะแนน) (ค) เมื่อวิศวกรคำนวณ ข้อ ก และ ข แล้ว จึงตัดสินใจแก้ปัญหาด้วยการหุ้มฉนวน พบว่าสามารถลดการ สูญเสียความร้อนได้มากถึง \( 85 \% \) จงหาว่าวิศวกรคนนี้ประหยัดค่าแก็สให้โรงงานกี่ดอลลาร์ (\$) (5 คะแนน)
Engineering Thailand Jan 30, 2025
ข้อ 4 การพาความร้อนแบบบังคับ ( 25 คะแนน) 4. ณ ประเทสญี่ปุ่นระหว่างที่วิศวกรเคมีเดินตรวจสอบโรงงานพบว่าท่อไอน้ำที่มีความยาว 12 m และเส้น ผ่านศูนย์กลาง 10 cm ถูกปล่อยให้สัมผัสกับอากาศภายนอกโดยตรง การวัดอุณหภูมิแสดงให้เห็นว่า อุณหภูมิเฉลี่ยของพื้นผิวด้านนอกของท่อไอน้ำอยู่ที่ \( 75^{\circ} \mathrm{C} \) ขณะที่อุณหภูมิของอากาศโดยรอบอยู่ที่ \( 5^{\circ} \mathrm{C}\left(\mathrm{T}_{\alpha}\right) \) นอกจากนี้ยังมีลมเบาพัดผ่านบริเวณนั้นด้วยความเร็ว \( 10 \mathrm{~km} / \mathrm{hr} \) ค่าการแผ่รังสี ( \( \mathcal{E} \), emissivity) ของพื้นผิว ด้านนอกของท่อเท่ากับ 0.8 และอุณหภูมิเฉลี่ยของพื้นผิวที่ล้อมรอบท่อรวมถึงท้องฟ้า อยู่ที่ประมาณ \( 0^{\circ} \mathrm{C} \) ( \( T_{\text {surr }} \) ) คำนวณ (ก) หาค่าสัมประสิทธิ์การพาความร้อน (10 คะแนน) (ข) อัตราการถ่ายโอนความร้อนจากท่อไอน้ำสู่ \( \left(\dot{Q}_{\text {total }}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {rad }}\right) \) (5 คะแนน) (ข) ปริมาณความร้อนที่สูญเสียไปจากไอน้ำใน 10 ชั่วโมง (5 คะแนน) (ค) เมื่อวิศวกรคำนวณ ข้อ ก และ ข แล้ว จึงตัดสินใจแก้ปัญหาด้วยการหุ้มฉนวน พบว่าสามารถลดการ สูญเสียความร้อนได้มากถึง \( 85 \% \) จงหาว่าวิศวกรคนนี้ประหยัดค่าแก็สให้โรงงานกี่ดอลลาร์ (\$) (5 คะแนน) ข้อมูลเพิ่มเติม ค่าใช้จ่ายสำหรับก๊าชธรรมชาติอยู่ที่ \( \$ 0.54 \) ต่อ 1 therm ( 1 therm \( =105,500 \mathrm{~kJ} \) ) 5
Engineering Thailand Jan 30, 2025
ข้อ 2 การนำความร้อนที่สภาวะคงที่ (10 คะแนน) น้ำร้อนอุณหภูมิ \( 90^{\circ} \mathrm{C} \) ไหลในท่อเหล็กหล่อ \( \left(\mathrm{k}=52 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right) \) ) ยาว 15 m เส้นผ่าศูนย์กลางภายในและ ภายนอกคือ \( D 1=4 \mathrm{~cm} \) และ \( D 2=4.6 \mathrm{~cm} \) ตามลำดับ ผิวภายนอกของท่อมีสภาพการแผ่รังสีเท่ากับ 0.7 ความร้อนสูญเสียให้กับอากาศล้อมรอบที่ \( 10^{\circ} \mathrm{C} \) โดยมีสัมประสิทธิ์การพาความร้อนคือ \( h_{2}=15 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \) กำหนดให้สัมประสิทธิ์การถ่ายโอนความร้อนภายในท่อคือ \( h_{1}=120 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \) โดยอุณหภูมิของท่อด้าน นอกเท่ากับ \( 80^{\circ} \mathrm{C} \) ให้นักศึกษาเขียนโครงข่ายความต้านทานความร้อน และสมการการถ่ายโอนความร้อนพร้อมทั้งสมการความ ต้านทานความร้อนแต่ละตัว (เขียนสมการ ไม่มีคำนวณ) 3
Engineering Thailand Jan 30, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy