Question
upstudy study bank question image url

Factorise completely: 1. \( t x-t y+r x-r y \) 2. \( b y-a x+b x-a y \) 3. \( 3 a^{2}-a x+6 a b-2 b x \) 4. \( x^{3}+3 x^{2}-x-3 \) 5. \( 2 a-1-2 a b+b \) 6. \( 6 x^{2}-a y-2 a x+3 x y \) 7. \( 4 a^{2}-4 b^{2}-b^{3}+a^{2} b \) 8. \( 6 x^{2}-x^{5}-6+x^{3} \) 9. \( x^{4}-x^{2}-x^{2} y^{2}+y^{2} \) 10. \( x^{3}+y^{3}+x+y \)

Ask by Jimenez Munoz. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( t x - t y + r x - r y = (t + r)(x - y) \) 2. \( b y - a x + b x - a y = (b - a)(x + y) \) 3. \( 3 a^{2} - a x + 6 a b - 2 b x = (3a - x)(a + 2b) \) 4. \( x^{3} + 3x^{2} - x - 3 = (x + 3)(x + 1)(x - 1) \) 5. \( 2 a - 1 - 2 a b + b = (2a - 1)(1 - b) \) 6. \( 6 x^{2} - a y - 2 a x + 3 x y = (3x - a)(2x + y) \) 7. \( 4 a^{2} - 4 b^{2} - b^{3} + a^{2} b = (b + 4)(a - b)(a + b) \) 8. \( 6 x^{2} - x^{5} - 6 + x^{3} = - (x - 1)(x + 1)(x^3 - 6) \) 9. \( x^{4} - x^{2} - x^{2} y^{2} + y^{2} = (x - 1)(x + 1)(x - y)(x + y) \) 10. \( x^{3} + y^{3} + x + y = (x + y)(x^{2} - xy + y^{2} + 1) \)

Solution

Here are the complete factorizations for each of the given expressions: 1. **\( t x - t y + r x - r y \)** Factor by grouping: \[ t(x - y) + r(x - y) = (t + r)(x - y) \] **Factorized Form:** \((t + r)(x - y)\) 2. **\( b y - a x + b x - a y \)** Rearrange and factor: \[ b(x + y) - a(x + y) = (b - a)(x + y) \] **Factorized Form:** \((b - a)(x + y)\) 3. **\( 3 a^{2} - a x + 6 a b - 2 b x \)** Factor by grouping: \[ 3a(a + 2b) - x(a + 2b) = (a + 2b)(3a - x) \] **Factorized Form:** \((3a - x)(a + 2b)\) 4. **\( x^{3} + 3x^{2} - x - 3 \)** Factor by grouping: \[ x^{2}(x + 3) - 1(x + 3) = (x + 3)(x^{2} - 1) = (x + 3)(x + 1)(x - 1) \] **Factorized Form:** \((x + 3)(x + 1)(x - 1)\) 5. **\( 2 a - 1 - 2 a b + b \)** Rearrange and factor: \[ (2a - 2ab) + (b - 1) = 2a(1 - b) + 1(b - 1) = (2a - 1)(1 - b) \] **Factorized Form:** \((2a - 1)(1 - b)\) 6. **\( 6 x^{2} - a y - 2 a x + 3 x y \)** Factor by grouping: \[ 2x(3x - a) + y(3x - a) = (3x - a)(2x + y) \] **Factorized Form:** \((3x - a)(2x + y)\) 7. **\( 4 a^{2} - 4 b^{2} - b^{3} + a^{2} b \)** Factor by grouping: \[ (4a^{2} + a^{2}b) - (4b^{2} + b^{3}) = a^{2}(4 + b) - b^{2}(4 + b) = (4 + b)(a^{2} - b^{2}) = (4 + b)(a - b)(a + b) \] **Factorized Form:** \((b + 4)(a - b)(a + b)\) 8. **\( 6 x^{2} - x^{5} - 6 + x^{3} \)** Rearrange and factor: \[ -x^{5} + x^{3} + 6x^{2} - 6 = -(x^5 - x^3 - 6x^2 + 6) \] Factor \(x^5 - x^3 - 6x^2 + 6\) by finding roots: \[ x^5 - x^3 - 6x^2 + 6 = (x - 1)(x + 1)(x^3 - 6) \] **Factorized Form:** \(- (x - 1)(x + 1)(x^3 - 6)\) 9. **\( x^{4} - x^{2} - x^{2} y^{2} + y^{2} \)** Factor by grouping: \[ x^{4} - x^{2} y^{2} - x^{2} + y^{2} = (x^{2} - 1)(x^{2} - y^{2}) = (x - 1)(x + 1)(x - y)(x + y) \] **Factorized Form:** \((x - 1)(x + 1)(x - y)(x + y)\) 10. **\( x^{3} + y^{3} + x + y \)** Factor by grouping: \[ x^{3} + y^{3} + x + y = (x + y)(x^{2} - xy + y^{2}) + (x + y) = (x + y)(x^{2} - xy + y^{2} + 1) \] **Factorized Form:** \((x + y)(x^{2} - xy + y^{2} + 1)\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Sure! Here are the completely factorised forms: 1. **\( t (x - y) + r (x - y) = (t + r)(x - y) \)** 2. **\( (b - a)(x - y) \)** 3. **\( (3a - 2b)(a + 3) - x(a - 6) = (3a - 2b - x)(a + 3) \)** 4. **\( (x + 3)(x^2 - x - 1) \)** 5. **\( (2a + b - 1) \)** 6. **\( 3x (2x - a + y) - a y \)** 7. **\( (4a^2 - b^3) - 4b^2 = (2a - b)(2a + b) \)** 8. **\( x^2(6 - x^3 + x) = x^2(6 + x - x^3) \)** 9. **\( (x^2 - y^2)(x^2 + 1) = (x - y)(x + y)(x^2 + 1) \)** 10. **\( (x + y)(x^2 - xy + y^2 + 1) \)** Happy factoring!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy