Question
upstudy study bank question image url

Find the eigenualue and eigen uectors of \( A=\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right] \).

Ask by Christensen Boone. in Nepal
Jan 11,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The matrix \( A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix} \) has eigenvalues \( \lambda_1 = 2 + i \) and \( \lambda_2 = 2 - i \). The corresponding eigenvectors are: - For \( \lambda_1 = 2 + i \): \( \mathbf{v}_1 = \begin{bmatrix} -1 + i \\ 1 \end{bmatrix} \) - For \( \lambda_2 = 2 - i \): \( \mathbf{v}_2 = \begin{bmatrix} -1 - i \\ 1 \end{bmatrix} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

To find the eigenvalues of the matrix \( A=\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right] \), we start by calculating the characteristic polynomial. This involves finding the determinant of \( A - \lambda I \), where \( \lambda \) is the eigenvalue and \( I \) is the identity matrix. 1. Set up the equation: \[ A - \lambda I = \left[\begin{array}{cc}1 - \lambda & -2 \\ 1 & 3 - \lambda\end{array}\right]. \] 2. Calculate the determinant: \[ \det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - (-2)(1) = \lambda^2 - 4\lambda + 5. \] 3. Set the determinant to zero and solve for \( \lambda \): \[ \lambda^2 - 4\lambda + 5 = 0. \] Using the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \lambda = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 20}}{2} = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i. \] The eigenvalues are \( \lambda_1 = 2 + i \) and \( \lambda_2 = 2 - i \). Next, let's find the eigenvectors corresponding to each eigenvalue: For \( \lambda_1 = 2 + i \): 1. Substitute \( \lambda_1 \) into \( A - \lambda I \): \[ A - (2 + i)I = \left[\begin{array}{cc}-1 - i & -2 \\ 1 & 1 - i\end{array}\right]. \] 2. Solve the system of equations: From the first row: \((-1 - i)x_1 - 2x_2 = 0\) Thus, \(x_1 = \frac{2x_2}{-1 - i}\). For simplicity, let's set \( x_2 = 1 \): \[ x_1 = \frac{2}{-1 - i} = \frac{2(-1 + i)}{(-1)^2 + 1^2} = -1 + i. \] So, an eigenvector corresponding to \( \lambda_1 \) is: \[ v_1 = \begin{pmatrix}-1 + i \\ 1\end{pmatrix}. \] For \( \lambda_2 = 2 - i \): 1. Substitute \( \lambda_2 \) into \( A - \lambda I \): \[ A - (2 - i)I = \left[\begin{array}{cc}-1 + i & -2 \\ 1 & 1 + i\end{array}\right]. \] 2. Solve similarly to get the eigenvector: Using \( x_2 = 1 \): \[ x_1 = \frac{2}{-1 + i} = \frac{2(-1 - i)}{(-1)^2 + 1^2} = -1 - i. \] So, an eigenvector corresponding to \( \lambda_2 \) is: \[ v_2 = \begin{pmatrix}-1 - i \\ 1\end{pmatrix}. \] Thus, the eigenvalues are \( 2 + i \) and \( 2 - i \), with corresponding eigenvectors \( \begin{pmatrix}-1 + i \\ 1\end{pmatrix} \) and \( \begin{pmatrix}-1 - i \\ 1\end{pmatrix} \), respectively.

Related Questions

Latest Other Questions

Numéro d'étudiant : 22007890 La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. \( ~ \) trer que l'endomorphisme \( f \) est diagonalisable. Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy