Algebra Questions from Jan 05,2025

Browse the Algebra Q&A Archive for Jan 05,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\#9: Combine into a single logarithm \( \log _{3} A+\log _{3} B-3 \log _{3} C \). \( (4 \) Points) Expand each as much as possible. \#6: \( \log _{3}(3 x) \) \( \# 7: \log _{2}(x(x+1)) \) \( \# 8: \log \left(x^{\wedge} 5^{*} y^{\wedge} 6 / z^{\wedge} 4\right) \) Expand each as much as possible. (3 Points Each) \#6: \( \log _{3}(3 x) \) \#7: \( \log _{2}(x(x+1)) \) \#8: \( \log _{\left(x^{\wedge} 5^{\star} y^{\wedge} 6 / z^{\wedge} 4\right)} \) 26. \( 2 x^{2}+5 x-3 \) 27. \( 2 x^{2}-8 x-10 \) The first two terms of arithmetic sequences are shown in each case below. Determine the value of the requested term. Show the work that leads to your answer. \( \begin{array}{ll}\text { a) } a_{1}=7 \text { and } a_{2}=20 \text {, find } a_{2 s} & \text { (b) } b_{1}=9 \text { and } b_{2}=4, \text { find } b_{30}\end{array} \) N-GEN MATH ALGEBRA I - UNIT 4 - LINEAR FUNCTIONS-LESSON 14 EMATHINstruction, RED HOOK, NY 12571, O2022 \#2: Graph \( y=2+2^{x-2} \) using \( x=0,1,2,3,4 \) (Count by 1 's up to 8 along the \( y \)-axis) (5 Points) 1. Simplify the following without the use of a calculator: (a) \( \left(\frac{1}{2}\right)^{x-1} \cdot(\sqrt{2})^{2 x-1} \) (b) \( \frac{2.3^{x}-3^{x-2}}{2.3^{x-2}} \) (c) \( \frac{6^{x}-3^{x-2}}{6.18^{x-2}} \) (d) \( (\sqrt{2}-3)(\sqrt{8}+2) \) (e) \( \frac{\sqrt{20 x^{5}}-\sqrt{10 x}+\sqrt{2 x^{6}}}{\sqrt{2} x^{6}} \) (f) \( \frac{\sqrt[4]{16 x^{5}}}{\sqrt{\sqrt{x}}} \) (g) \( \sqrt{72}-\sqrt{2^{7}} \) 2. Simplify the following: \( \frac{2}{\sqrt{3}}-\frac{\sqrt{3}}{2} \) (rationalise the denominator) 3. Solve for \( x \) if: \( 3^{3 x}+3^{3 x}+3^{3 x}=3^{9 x} \) 4. Solve the following equations: (a) \( x^{\frac{1}{3}}=9 \) (b) \( \quad\left(\frac{1}{3}\right)^{x}=9 \) (c) \( \frac{1}{3} x=9 \) (d) \( \frac{1}{16} x^{\frac{3}{4}}=4 \) (e) \( \frac{1}{16} \cdot 2^{\frac{3}{4} x}=4 \) (f) \( 4 x^{\frac{2}{3}}+2=18 \) 5. Solve for \( x \) : (a) \( 2^{x+1}+2^{x+2}=6 \) (b) \( \quad 2^{x+1} \cdot 2^{x+2}=4 \) 6. Solve for \( x \) : (a) \( \quad 2^{2 x}+3.2^{x}-4=0 \) (b) \( 4^{x}-2^{x-2}=0 \) (c) \( x^{\frac{2}{3}}+4 x^{\frac{1}{3}}-5=0 \) (d) \( 3^{x}+3.3^{-x}-4=0 \) SECTION B (9 MARKS) 1. Show that \( (\sqrt{3})^{-2 x}+4.3^{1-x}=\frac{13}{3^{x}} \quad \) 2. Show that \( \frac{9^{x+1}-6.3^{2 x}}{(\sqrt{3})^{4 x+1}}=\sqrt{3} \) 3. Show that \( \left(\frac{\sqrt{x^{5}}-\sqrt{x^{3}}}{x}\right)^{2}=x(x-1)^{2}, x>0 \) 4. Calculate 4. \( (\sqrt{2})^{3} \cdot 8^{\frac{2}{3}} \) without the use of a calculator (simplest surd form). 5. Given: \( \mathrm{P}=\frac{5^{x}+5^{x}+5^{x}+5^{x}+5^{x}}{5^{x+5}} \). If \( x=2011 \) then, (1) \( \mathrm{P}=5^{8039} \) (2) \( \mathrm{P}=1 \) (3) \( \mathrm{P}=5^{-4} \) (4) \( \mathrm{P}=5 \) 1. Simplify the following without the use of a calculator: (a) \( \left(\frac{1}{2}\right)^{x-1} \cdot(\sqrt{2})^{2 x-1} \) (b) \( \frac{2.3^{x}-3^{x-2}}{2.3^{x-2}} \) (c) \( \frac{6^{x}-3^{x-2}}{6.18^{x-2}} \) (d) \( (\sqrt{2}-3)(\sqrt{8}+2) \) (e) \( \frac{\sqrt{20 x^{5}}-\sqrt{10 x}+\sqrt{2 x^{6}}}{\sqrt{2} x^{6}} \) (f) \( \frac{\sqrt[4]{16 x^{5}}}{\sqrt{\sqrt{x}}} \) (g) \( \sqrt{72}-\sqrt{2^{7}} \) 2. Simplify the following: \( \frac{2}{\sqrt{3}}-\frac{\sqrt{3}}{2} \) (rationalise the denominator) 3. Solve for \( x \) if: \( 3^{3 x}+3^{3 x}+3^{3 x}=3^{9 x} \) 4. Solve the following equations: (a) \( x^{\frac{1}{3}}=9 \) (b) \( \left(\frac{1}{3}\right)^{x}=9 \) (c) \( \quad \frac{1}{3} x=9 \) (d) \( \frac{1}{16} x^{\frac{3}{4}}=4 \) (e) \( \frac{1}{16} \cdot 2^{\frac{3}{4} x}=4 \) (f) \( 4 x^{\frac{2}{3}}+2=18 \) 5. Solve for \( x \) : (a) \( 2^{x+1}+2^{x+2}=6 \) (b) \( \quad 2^{x+1} \cdot 2^{x+2}=4 \) 6. Solve for \( x \) : (a) \( 2^{2 x}+3.2^{x}-4=0 \) (b) \( 4^{x}-2^{x-2}=0 \) (c) \( x^{\frac{2}{3}}+4 x^{\frac{1}{3}}-5=0 \) (d) \( 3^{x}+3.3^{-x}-4=0 \) SECTION B (9 MARKS) 1. Show that \( (\sqrt{3})^{-2 x}+4.3^{1-x}=\frac{13}{3^{x}} \quad \) 2. Show that \( \frac{9^{x+1}-6.3^{2 x}}{(\sqrt{3})^{4 x+1}}=\sqrt{3} \) 3. Show that \( \left(\frac{\sqrt{x^{5}}-\sqrt{x^{3}}}{x}\right)^{2}=x(x-1)^{2}, x>0 \) 4. Calculate 4. \( (\sqrt{2})^{3} \cdot 8^{\frac{2}{3}} \) without the use of a calculator (simplest surd form). 5. Given: \( \mathrm{P}=\frac{5^{x}+5^{x}+5^{x}+5^{x}+5^{x}}{5^{x+5}} \). If \( x=2011 \) then, (1) \( \mathrm{P}=5^{8039} \) (2) \( \mathrm{P}=1 \) (3) \( \mathrm{P}=5^{-4} \) (4) \( \mathrm{P}=5 \) \#9: Find a polynomial of degree 4 with zeroes of 0 and 3 , where 3 has a multiplicity of 3 , and \( P(1)=24 \). (7 Points)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy