Algebra Questions from Jan 14,2025

Browse the Algebra Q&A Archive for Jan 14,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
ons \( -4 x+y=5 \) and \( -x+4 y=12 \) Muliply \( \frac{1}{8}(8 a-24) \) Dhe line parallel to \( 3 x+y=8 \) that passes through \( (0,-4) \) The line parallel to \( y=-3 x-2 \) that passes through \( (-2,7) \) 13. \( \left(p^{6}\right)^{3} \) 14. \( \left(q^{-4}\right)^{5} \) 15. \( 5^{3} \cdot 5^{-7} \) 16. \( -4 \cdot(-4)^{-2} \) 17. \( \frac{x^{7}}{x^{4}} \cdot x^{2} \) 18. \( \frac{v^{5} \cdot v^{3}}{v^{2}} \) 19. \( \left(-8 t^{2}\right)^{3} \) 20. \( \left(-\frac{q^{4}}{5}\right)^{-3} \) 21. \( \left(\frac{1}{3 h^{5}}\right)^{-4} \) In Exercises 22 and 23, simplify the expression. Write your answer using only \( y=-4 x-5 \) yhe line with slope 5 that passes through \( (2,-5) \) In Exercises \( 7-21 \), simplify the expression. Write your answer using only positi exponents. \( \begin{array}{lll}\text { 7. } \frac{7^{-2} m^{0}}{n^{-4}} & \text { 8. } \frac{(-9)^{0} j^{-1} k^{-4}}{2^{0}} & \text { 9. } \frac{5^{-2} w^{0}}{y^{-10}} \\ \begin{array}{lll}\text { 10. } \frac{t^{-5}}{8^{-2} s^{-3}} & \text { 11. } \frac{3^{-2} a^{-1}}{9^{-1} b^{-2} c^{0}} & \text { 12. } \frac{17 x^{0} y^{-8}}{4^{-2} z^{-6}} \\ \text { 13. }\left(p^{6}\right)^{3} & \text { 14. }\left(q^{-4}\right)^{5} & \text { 15. } 5^{3} \cdot 5^{-7} \\ \text { 19. }\left(-8 t^{2}\right)^{3} & \text { 17. } \frac{x^{7}}{x^{4} \cdot x^{2}} & \text { 18. } \frac{v^{5} \cdot v^{3}}{v^{2}}\end{array}\end{array} \begin{array}{lll}\text { 16. }-4 \cdot(-4)^{-2} & \text { 21. }\left(\frac{1}{3 h^{5}}\right)^{-4}\end{array} \) The line with slope -4 that passes through \( (0,-5) \) 2. If \( f(x)=x^{2}+5 x-7 \) and \( g(x)=x+1 \), find each of the following: \[ \begin{array}{l|l|l} & \text { a. } f(-3) \\ =-3^{2}+5(-3)-7 & \begin{array}{l} \text { b. } g(f(-2)) \\ =9-15-7 \\ =9-2)=-2^{2}+5(-2)-7 \\ \\ =9 \end{array} & \begin{array}{l} \text { c. Find } k \text { so that } g(k+3)=2 g(2 k) \\ f(-2)=4-10-7 \end{array} \\ f(K+3)+1=((2 K)+1 \\ f(-2)=-13 & K+4=4 K+2 \\ g(-13)=-13+1 & \frac{5 k}{5}=\frac{6}{5} \quad K=\frac{6}{5} \\ g(-13)=-12 & \end{array} \] e following: Find \( k \) so that \( g(k+3)=2 g(2 k) \) (6pts)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy