Calculus Questions from Dec 08,2024

Browse the Calculus Q&A Archive for Dec 08,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Use the given function to complete parts a) through e) below. \( f(x)=-x^{4}+25 x^{2} \) a) Use the Leading Coefficient Test to determine the graph's end behavior. A. The graph of \( f(x) \) rises left and rises right. B. The graph of \( f(x) \) rises left and falls right. C. The graph of \( f(x) \) falls left and rises right. D. The graph of \( f(x) \) falls left and falls right. b) Find the \( x \)-intercepts. \( x=\square \) (Type an integer or a decimal. Use a comma to separate answers as needed.) e. \( \int \frac{1}{4^{x}} d x= \) In the figure, the equation of the solid parabola is \( y=x^{2}-2 \) and the equation of the dashed line is \( y=x \). Determine the area of the shaded region. The area of the shaded region is \( \square \). (Type an exact answer.) d. \( \int x^{3} \cdot \sqrt[3]{x} d x= \) 4- \( \quad \) if \( x(t)=\cos \left(\frac{t}{1+t}\right), y(t)=\sin \left(\frac{t}{1+t}\right) \) show that \( y^{3} y^{\prime \prime}+1=0 \) 5- \( \quad \) If \( x(t)=\frac{(t+1)}{t-1}, y(t)=\left(\frac{t-1}{t+1}\right)^{5} \quad \) show that \( y^{\prime \prime}=30 x^{-7} \) Compute each sum below. Give exact values, not decimal approximations. If the sum does not exist, click on "No sum". \[ \left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{3}+\ldots=\square \] Compute each sum below. Give exact values, not decimal approximations. If the sum does not exist, click on "No sum". \[ \sum_{i=1}^{\infty}\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{3}+\ldots=\square \] Compute each sum below. Give exact values, not decimal approximations. If the sum does not exist, click on "No sum". \( 4+4\left(\frac{3}{5}\right)+4\left(\frac{3}{5}\right)^{2}+\ldots=\square \) \( \sum_{k=1}^{\infty} 3(-5)^{k}=\square \) Al derivar \( f(x)=\frac{2 x-3}{e} \) se obtiene: \( \begin{array}{l}f^{\prime}(x)=\frac{2 x+5}{e} \\ f^{\prime}(x)=\frac{2 x-1}{e} \\ f^{\prime}(x)=\frac{2 x-1}{\mathrm{t}} \\ f^{\prime}(x)=\frac{2 x-1}{e}\end{array} \). Evaluate \( f(x)=e^{x+3}+2 \) when \( x=4 \). (Round to three decimal places.) Provide your answer below: \( f(4)=\square \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy