Calculus Questions from Dec 19,2024

Browse the Calculus Q&A Archive for Dec 19,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\( x \frac { \partial u } { \partial x } - y \frac { \partial u } { \partial y } = 0 \) \( x \frac { \partial u } { \partial x } - y \frac { \partial u } { \partial y } = 0 \) 5) Вычислить предел \( \lim _{x \rightarrow 0}\left(\frac{2}{\pi} \arccos x\right)^{\frac{1}{x}} \). Find the point of inflection of the graph of the function. (If an answer does not exist, enter DNE.) \[ f(x)=4-3 x^{4} \] \( (x, y)=( \) Describe the concavity. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) concave downward \( \left. \begin{array} { l } { \frac { \partial u } { \partial t } = \frac { \partial _ { 0 } v _ { 0 } } { \partial x ^ { 2 } } \quad 0 < x < \pi , \quad t > 0 } \\ { u ( 0 , t ) = u ( \pi , t ) = 0 \quad t > 0 } \\ { u ( x , 0 ) = e ^ { x } \quad 0 < x < \pi } \end{array} \right. \) (25 pts.) Determine una solución formal del problema con valores iniciales y en la frontera \[ \begin{array}{ll}\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, t>0 \\ u(0, t)=u(\pi, t)=0, & t>0 \\ u(x, 0)=e^{x}, & 0<x<\pi\end{array} \] Provide an appropriate response. Find the local extrema for \( f(x, y)=x^{3}-12 x+y^{2} \) Find the partial derivative. Find \( f_{x}(5,-3) \) when \( f(x, y)=7 x^{2}-9 x y \) A company manufactures and sells \( x \) pocket calculators per week. If the weekly cost and demand equations are given by: \( C(x)=8,000+5 x \) \( p=14-\frac{x}{4,000}, 0 \leq x \leq 25,000 \) Find the production level that maximizes profit. Find the absolute maximum and minimum values of the function \( f(x)=\frac{4 x}{x^{2}+1} \) on the interval \( [-3,0] \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy