Geometry Questions from Jan 05,2025

Browse the Geometry Q&A Archive for Jan 05,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
A bicycle wheel has a diameter of 63 cm . Calculate how many times the wheel turns round in travelling 19.8 km . Use the value \( 3 \frac{1}{7} \) for \( \pi \). 24.2 Trovare la forma canonica e riconoscere il tipo della quadrica \[ \mathscr{Q}: x y+y z=z . \] To È più conveniente riscrivere la quadrica come \( \mathscr{Q}: 2 x y+2 y z-2 z=0 \). Le sociate sono allora \( A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right) \quad Q=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \) A right triangle has a hypotenuse measuring 13 units and one leg measuring 5 units. Determine the length of the other leg. Find the equation of a circle whose end points of any diameter are \( (2,-1) \) and \( (-2,2) \). Calculate the volume of a cylinder with a radius of 5 cm and a height of 10 cm. Find the equation of a circle whose centre is \( (2,-1) \) and which passes through the point \( (3,6) \) ? Con la traslazione (T) \( \left\{\begin{array}{l}x^{\prime \prime}=x^{\prime}+\frac{\sqrt{2}}{10} \quad \text { la conica diventa } \mathscr{C}^{\prime \prime \prime}: 5 x^{\prime \prime 2}-y^{\prime \prime 2}=\frac{1}{10}: 0,0 \\ y^{\prime \prime}=y^{\prime}\end{array}\right. \) in forma canonica euclidea \[ \mathscr{C}^{\prime \prime}: \frac{x^{\prime \prime 2}}{\left(\sqrt{\frac{1}{50}}\right)^{2}}-\frac{y^{\prime \prime 2}}{\left(\sqrt{\frac{1}{10}}\right)^{2}}=1 \] Riscalando gli assi cartesiani con \( \oint \cdot\left\{\begin{array}{l}X=\sqrt{50} x^{\prime \prime} \\ Y=\sqrt{10} y^{\prime \prime}\end{array} \quad\right. \) si trova la forma canonica affion \( \mathscr{I}: X^{2}-Y^{2}=1 \). L'affinità che ha trasformato \( \mathscr{C} \) in \( \mathscr{I} \) è \( f=\phi \circ \tau \circ \rho \). Passiampo a \( \mathscr{D} \). Gli autovalori di \( Q^{\prime} \) sono 3 e -1 con gli autospazi \( E(3)=\mathcal{L}(\sqrt{3}, 1) \) e \( E(-1) \) \( \mathcal{L}(-1, \sqrt{3}) \). Usiamo allora la matrice ortogonale \( N=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 1 & \sqrt{3}\end{array}\right) \) con la rotario 11. Prostorija je duga 4 m i široka 256 cm . Ob pločicama kvadratnog oblika što većih di svake takve pločice? Radius of the base of a cone is 7 cm and its slant height is 10 cm . Find its i) curved surface area ii) total surface area. ( choose suitable value of pi) Find the radius of \( a \) sphere whose surface area is 616 cm
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy