Trigonometry Questions from Dec 22,2024

Browse the Trigonometry Q&A Archive for Dec 22,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
If \( \sec (3 \theta+15)=\csc (35-\theta) \) where \( \theta \) is an acute angle, then \( \csc \frac{3}{2} \theta=\cdots \) \( \begin{array}{llll}\text { (a) } 2 & \text { (b) } \sqrt{3} & \text { (c) } \sqrt{2} & \text { (d) } \frac{1}{2}\end{array} \) 11) The measure of the smallest positive angle satisfy the relation : \( 2 \sin \theta=-1 \) is \( \begin{array}{lll}\text { (a) } 30^{\circ} & \text { (b) } 120^{\circ} & \text { (c) } 210^{\circ} y=x\end{array} \) The value of \( \sec \left(300^{\circ}\right) \sin \left(270^{\circ}-\theta\right)+\tan \left(-45^{\circ}\right) \cos \left(360^{\circ}-\theta\right) \) is \( \begin{array}{llll}\text { (a) }-3 \sin \theta & \text { (b) }-3 \cos \theta & \text { (c) } 3 \cos \theta & \text { (d) } 0\end{array} \) (6) The value of \( \sec \left(300^{\circ}\right) \sin \left(270^{\circ}-\theta\right)+\tan \left(-45^{\circ}\right) \cos (3 M-9) \) is \( \begin{array}{lll}\text { (a) }-3 \sin \theta & \text { (b) }-3 \cos \theta & \text { (c) } 3 \cos \theta\end{array} \) (7) If the product of two roots of the equation : \( (k-2) x^{2}-6 x+12=0 \) equals 3 \( \log ( \cos \theta ) + \log ( \sec \theta ) = \ldots \ldots \ldots . . , \theta \in [ 0 , \frac { \pi } { 2 } ] \) 3. Выразите в градусной мере величины углов: а) \( 3 ; \) б) \( -\frac{\pi}{9} \); в) \( \frac{5 \pi}{12} \); г) \( \frac{7 \pi}{3} \); д) 4,2 ; е) \( \frac{\pi}{5} \); ж) \( 0,6 \pi \); з) \( \frac{25}{18} \pi \). If \( \csc \theta=\frac{x+1}{x}, x>0 \), then \( \cot \theta= \) Exercice 1: D. Ecrirc sous forme trigonométrique : \( z_{1}=2\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right) \) \( \begin{array}{ll}z_{2}=-3\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \quad z_{3}=2\left(\cos \frac{\pi}{4}+i \sin \frac{3 \pi}{4}\right) \\ z_{4}=\cos \frac{\pi}{6}+i \sin \left(-\frac{\pi}{6}\right) \quad z_{5}=\cos \theta-i \sin \theta \quad z_{5}=\sin \theta+i \cos \theta\end{array} \) If \( x \) is in the third quadrant, then \( \cot x \) in terms of \( \sec x \) is A) \( \frac{\sqrt{\sec ^{2} x-1}}{\sec ^{2} x-1} \) B) \( -\frac{\sqrt{\sec ^{2} x-1}}{\sec ^{2} x-1} \) C) \( -\frac{\sqrt{\sec ^{2} x+1}}{\sec ^{2} x-1} \) What is the definition of the cosine function in relation to a right triangle using the adjacent side and hypotenuse?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy