Trigonometry Questions from Nov 06,2024

Browse the Trigonometry Q&A Archive for Nov 06,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
4. La expresión correcta para calcular sen \( 225^{\circ} \) sin usar calcualadora es: \( \begin{array}{llll}\text { A. } \operatorname{sen} 180^{\circ}+\operatorname{sen} 45^{\circ} & \text { B. } \operatorname{sen} 200^{\circ}+\operatorname{sen} 25^{\circ} & \text { C. } \operatorname{sen}\left(270^{\circ}-45^{\circ}\right) & \text { D. } \operatorname{sen}\left(180^{\circ}-45^{\circ}\right)\end{array} \) (10) Dos personas están separadas 2 km de distancia. Sobre su plano vertical y en el mismo momento, hay una nube bajo ángulos respectivos de \( 73^{\circ} \) y \( 84^{\circ} \). Calcula la altura de la nube y la distancia de la mis- ma a cada una de las personas. 10. \( \frac{1+\operatorname{Sen} A}{\operatorname{Cos} A}+\frac{\operatorname{Cos} A}{\operatorname{Sen} A}=\frac{1+\operatorname{Sen} A}{\operatorname{Sen} A \cdot \operatorname{Cos} A} \) 12. \( \frac{1-\operatorname{Cos} A}{\operatorname{Sen} A}+\frac{\operatorname{Sen} A}{1-\operatorname{Cos} A}=2 \operatorname{Cec} A \) 14. \( \frac{1}{1-\operatorname{Sen} B}=\operatorname{Sec}^{2} B+\operatorname{Sec} B \operatorname{Tan} B \) 16. \( \operatorname{Tan}^{2} B-\operatorname{Sen}^{2} B=\operatorname{Tan}^{2} B \operatorname{Sen}^{2} B \) 18. \( \frac{\operatorname{Sen} \theta-\operatorname{Sen}^{3} \theta}{\operatorname{Cos}^{2} \theta}=\frac{1}{\operatorname{Csc} \theta} \) 20. \( \frac{\operatorname{Cos}^{4} \alpha-\operatorname{Sen}^{4} \alpha}{1-\operatorname{Tan}^{4} \alpha}=\operatorname{Cos}^{4} \alpha \) 1. For each trigonometric ratio, use a sketch to determine in which quadrant the terminal arm of the principal angle lies, the value of the related acute angle, and the sign of the ratio. \( \begin{array}{ll}\text { a) } \sin \frac{3 \pi}{4} & \text { d) } \sec \frac{5 \pi}{6} \\ \text { b) } \cos \frac{5 \pi}{3} & \text { e) } \cos \frac{2 \pi}{3} \\ \text { c) } \tan \frac{4 \pi}{3} & \text { f) } \cot \frac{7 \pi}{4}\end{array} \) 9. \( \frac{\operatorname{Tan}^{2} \theta+1}{\operatorname{Tan}^{2} \theta}=\operatorname{Csc}^{2} \theta \) 11. \( \frac{\operatorname{Tan} A}{\operatorname{Sec} A}-\frac{\operatorname{Sec} A-\operatorname{Cos} A}{\operatorname{Tan} A}=0 \) 13. \( \frac{\operatorname{Sen} A}{1+\operatorname{Sec} A}-\frac{\operatorname{Sen} A}{1-\operatorname{Sec} A}=2 \operatorname{Cot} A \) 15. \( \operatorname{Sec}{ }^{2} B-\operatorname{Csc}{ }^{2} B=\frac{\operatorname{Tan} B-\operatorname{Cot} B}{\operatorname{Sen} B \operatorname{Cos} B} \) 17. \( \frac{1}{1+\operatorname{Sen} x}=\frac{1-\operatorname{Sen} x}{\operatorname{Cos}^{2} x} \) 19. \( \frac{\operatorname{Sec} \alpha+1}{\operatorname{Sen} \alpha}=\frac{\operatorname{Tan} \alpha}{\operatorname{Cos} \alpha(\operatorname{Sec} \alpha-1)} \) La expresión para calcular tan \( 150^{\circ} \) usando identidades de suma y diferencia de ángulos sin usar calculadora es: \( \begin{array}{llll}\tan \left(100^{\circ}+50^{\circ}\right) & \text { B. } \tan \left(30^{\circ}+120^{\circ}\right) & \text { C. } 2 \tan 75^{\circ} & \text { D. } \tan \left(60^{\circ}+90^{\circ}\right)\end{array} \) 1. Halla, en cada caso, el valor de las funciones trigo- nométricas a partir de \( P(x, y) \). \( \begin{array}{ll}\text { a. }\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) & \text { b. }\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\ \text { c. }\left(\frac{2}{3},-\frac{\sqrt{5}}{3}\right) & \text { d. }\left(\frac{3}{5}, \frac{4}{5}\right)\end{array} \) Solve the following triangle. \( B=30^{\circ}, C=40^{\circ}, b=7 \) A \( \approx \square^{\circ} \) (Simplify your answer.) \( a \approx \square \) \( ( \) Type an integer or decimal rounded to two decimal places as needed.) \( C \approx \square \) (Type an integer or decimal rounded to two decimal places as needed.) 9. Halla sent \( y \) tant, si \( \cos t=-\frac{2}{3} \) y \( t \) se ubica en el segundo cuadrante. \( \sec ^ { 2 } x ( 2 \sin ^ { 2 } x + \cos ^ { 2 } x ) \equiv \sec ^ { 4 } x - \tan ^ { 4 } x \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy