Trigonometry Questions from Jan 14,2025

Browse the Trigonometry Q&A Archive for Jan 14,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
simplify \( \frac{\sin 210 \cos 300 \tan 240}{\cos 120 \tan 150 \sin 330} \) \( 6.2 \quad[\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) Simplify the following expressions without using a calculator. \( 6.1 \quad \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) 6.1 \( \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) \( 6.2[\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) 6.3 If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator 6. At a point 100 m from the base of the Eiffel tower, the angle of elevation of the top of the tower is \( 73^{\circ} \). How tall is the tower to the nearest metre? Simplify the following expressions without using a calculator. \( \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) e) \( \operatorname{cotg}(2 x)=4 \) Show that, \( \frac{1+\cos \theta}{1-\cos \theta}+\frac{1-\cos \theta}{1+\cos \theta}=4 \cot ^{2} \theta+2 \) 3. A road rises 15 m for each 150 m of horizontal distance. What is the angle of inclination of the road to the nearest degree? i) Simplify the following to one trigonometric ratio: i. \( \frac{\cos \left(360^{\circ}-x\right) \cdot \sin \left(180^{\circ}-x\right)}{\cos \left(180^{\circ}+x\right)} \) ii. \( \frac{\cos \left(720^{\circ}-x\right) \cdot \cos \left(90^{\circ}-x\right)}{\cos \left(-180^{\circ}-x\right)} \) iii. \( \frac{\cos \left(360^{\circ}+x\right) \cdot \cos \left(90^{\circ}-x\right)}{\cos \left(180^{\circ}-x\right) \cdot \cos \left(-180^{\circ}+x\right)} \) iv. \( \frac{\cos ^{2}\left(90^{\circ}+x\right)}{\tan \left(540^{\circ}+x\right) \cdot \cos \left(-180^{\circ}+x\right) \cdot \cos \left(180^{\circ}-x\right)} \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy