Trigonometry Questions from Jan 15,2025

Browse the Trigonometry Q&A Archive for Jan 15,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
What are the coordinates of the terminal point determined by \( t=\frac{20 \pi}{3} \) ? \[ \text { A. }\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \] B. \( \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) C. \( \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) D. \( \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) If \( \sin \theta=\frac{2}{3} \), which of the following are possible for the same value of \( \theta \) ? \( \square \) A. \( \cos \theta=-\frac{\sqrt{5}}{3} \) and \( \tan \theta=\frac{2}{\sqrt{5}} \) \( \square \) B. \( \cos \theta=\frac{\sqrt{5}}{3} \) and \( \tan \theta=\frac{2}{\sqrt{5}} \) \( \square \) C. \( \sec \theta=\frac{3}{\sqrt{5}} \) and \( \tan _{\theta}=\frac{2}{\sqrt{5}} \) \( \square \) D. \( \sec _{\theta}=-\frac{3}{2} \) and \( \tan \theta=\frac{2}{\sqrt{5}} \) c) \( \tan x<0 \) and \( 180^{\circ}<x<360^{\circ} \) d) \( \cos x>0 \) and \( \sin x<0 \) ? (d) If \( 12 \tan \mathrm{C}+5=0 \) and C C \( \left(90^{\circ} ; 270^{\circ}\right) \), find the value of \( 12 \tan \mathrm{C}-13 \cos \mathrm{C} \) wit the aid of a diagram and without using a calculator. (5) Given that \( \sin \alpha=-\frac{3}{5} \) and \( \cos \alpha>0 \), determine, without the the of a calculator, the value of \( 12 \tan a+15 \cos a \). b. If \( O A \) is 6 units, \( A \) is the point \( (-\sqrt{11} ; y) \) and \( X O A=\alpha \), use the given diagram calculate the value of: b) \( \sin \alpha-\sqrt{11} \cos \alpha \) \( \operatorname{Sin} \) GPP c) \( \tan x<0 \) and \( 180^{\circ}<x<360^{\circ} \) d) \( \cos x>0 \) and \( \sin x<0 \) ? (d) If \( 12 \tan \mathrm{C}+5=0 \) and C C \( \left(90^{\circ} ; 270^{\circ}\right) \), find the value of \( 12 \tan \mathrm{C}-13 \cos \mathrm{C} \) wit the aid of a diagram and without using a calculator. (5) Given that \( \sin \alpha=-\frac{3}{5} \) and \( \cos \alpha>0 \), determine, without the the of a calculator, the value of \( 12 \tan a+15 \cos a \). b. If \( O A \) is 6 units, \( A \) is the point \( (-\sqrt{11} ; y) \) and \( X O A=\alpha \), use the given diagram calculate the value of: b) \( \sin \alpha-\sqrt{11} \cos \alpha \) \( \operatorname{Sin} \) GPP c) \( \tan x<0 \) and \( 180^{\circ}<x<360^{\circ} \) d) \( \cos x>0 \) and \( \sin x<0 \) ? (d) If \( 12 \tan \mathrm{C}+5=0 \) and C C \( \left(90^{\circ} ; 270^{\circ}\right) \), find the value of \( 12 \tan \mathrm{C}-13 \cos \mathrm{C} \) wit the aid of a diagram and without using a calculator. (5) Given that \( \sin \alpha=-\frac{3}{5} \) and \( \cos \alpha>0 \), determine, without the the of a calculator, the value of \( 12 \tan a+15 \cos a \). b. If \( O A \) is 6 units, \( A \) is the point \( (-\sqrt{11} ; y) \) and \( X O A=\alpha \), use the given diagram calculate the value of: b) \( \sin \alpha-\sqrt{11} \cos \alpha \) \( \operatorname{Sin} \) GPP What is the value of x if \( \tan^{-1}(x) = 1 \)? \( 3 \cos \theta+3=4 \sin ^{2} \theta \). Find the general solution. \( \sin \left(\theta-20^{\circ}\right)=\cos 3 \theta \). Find the general solution. \( \tan \left(\theta+40^{\circ}\right)=\tan 52^{\circ} \) and \( -360^{\circ} \leq \theta \leq 360^{\circ} \) \( 3 \cos \theta+3=4 \sin ^{2} \theta \). Find the general solution.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy