Home Math Solver
error msg
  • Algebra
  • Calculus
  • Trigonometry
  • Matrix
  • Differential
  • Integral
  • Trigonometry
  • Letters

Question

\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Identify the conic
  • Find the center of the ellipse

  • Find the foci of the ellipse

  • Find the vertices of the ellipse

  • Find the eccentricity of the ellipse

More methods Hide more
\left(0,0\right)
Rewrite in standard form
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Solution
\left(0,0\right)
Show Solutions
Hide Solutions
Solve the equation
  • \text{Solve for }x

  • \text{Solve for }y

\begin{align}&x=2\sqrt{9-y^{2}}\\&x=-2\sqrt{9-y^{2}}\end{align}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Move the expression to the right-hand side and change its sign
\frac{x^{2}}{36}=1-\frac{y^{2}}{9}
Subtract the terms
More Steps Hide Steps
Evaluate
1-\frac{y^{2}}{9}
Reduce fractions to a common denominator
\frac{9}{9}-\frac{y^{2}}{9}
Write all numerators above the common denominator
\frac{9-y^{2}}{9}
\frac{x^{2}}{36}=\frac{9-y^{2}}{9}
\text{Multiply both sides of the equation by }36
\frac{x^{2}}{36}\times 36=\frac{9-y^{2}}{9}\times 36
Multiply the terms
x^{2}=\frac{\left(9-y^{2}\right)\times 36}{9}
Evaluate
x^{2}=36-4y^{2}
Take the root of both sides of the equation and remember to use both positive and negative roots
x=\pm \sqrt{36-4y^{2}}
Simplify the expression
More Steps Hide Steps
Evaluate
\sqrt{36-4y^{2}}
Factor the expression
\sqrt{4\left(9-y^{2}\right)}
The root of a product is equal to the product of the roots of each factor
\sqrt{4}\times \sqrt{9-y^{2}}
Evaluate the root
More Steps Hide Steps
Evaluate
\sqrt{4}
\text{Write the number in exponential form with the base of }2
\sqrt{2^{2}}
\text{Reduce the index of the radical and exponent with }2
2
2\sqrt{9-y^{2}}
x=\pm 2\sqrt{9-y^{2}}
Solution
\begin{align}&x=2\sqrt{9-y^{2}}\\&x=-2\sqrt{9-y^{2}}\end{align}
Show Solutions
Hide Solutions
Testing for symmetry
  • Testing for symmetry about the origin

  • Testing for symmetry about the x-axis

  • Testing for symmetry about the y-axis

\textrm{Symmetry with respect to the origin}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
\text{To test if the graph of }\frac{x^{2}}{36}+\frac{y^{2}}{9}=1\text{ is symmetry with respect to the origin,substitute -x for x and -y for y}
\frac{\left(-x\right)^{2}}{36}+\frac{\left(-y\right)^{2}}{9}=1
Evaluate
More Steps Hide Steps
Evaluate
\frac{\left(-x\right)^{2}}{36}+\frac{\left(-y\right)^{2}}{9}
Rewrite the expression
\frac{x^{2}}{36}+\frac{y^{2}}{9}
Reduce fractions to a common denominator
\frac{x^{2}}{36}+\frac{y^{2}\times 4}{9\times 4}
Multiply the numbers
\frac{x^{2}}{36}+\frac{y^{2}\times 4}{36}
Write all numerators above the common denominator
\frac{x^{2}+y^{2}\times 4}{36}
Use the commutative property to reorder the terms
\frac{x^{2}+4y^{2}}{36}
\frac{x^{2}+4y^{2}}{36}=1
Solution
\textrm{Symmetry with respect to the origin}
Show Solutions
Hide Solutions
Find the first derivative
  • \text{Find the derivative with respect to }x

  • \text{Find the derivative with respect to }y

\frac{dy}{dx}=-\frac{x}{4y}
Calculate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Take the derivative of both sides
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)=\frac{d}{dx}\left(1\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)
Use differentiation rules
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(x^{2}\right)}{36}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{2x}{36}
Calculate
\frac{x}{18}
\frac{x}{18}+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(y^{2}\right)}{9}
Evaluate the derivative
\frac{2y\frac{dy}{dx}}{9}
\frac{x}{18}+\frac{2y\frac{dy}{dx}}{9}
Calculate
\frac{x+4y\frac{dy}{dx}}{18}
\frac{x+4y\frac{dy}{dx}}{18}=\frac{d}{dx}\left(1\right)
Calculate the derivative
\frac{x+4y\frac{dy}{dx}}{18}=0
Simplify
x+4y\frac{dy}{dx}=0
Move the constant to the right side
4y\frac{dy}{dx}=0-x
Removing 0 doesn't change the value,so remove it from the expression
4y\frac{dy}{dx}=-x
Divide both sides
\frac{4y\frac{dy}{dx}}{4y}=\frac{-x}{4y}
Divide the numbers
\frac{dy}{dx}=\frac{-x}{4y}
Solution
\frac{dy}{dx}=-\frac{x}{4y}
Show Solutions
Hide Solutions
Find the second derivative
  • \text{Find the second derivative with respect to }x

  • \text{Find the second derivative with respect to }y

\frac{d^2y}{dx^2}=-\frac{4y^{2}+x^{2}}{16y^{3}}
Calculate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Take the derivative of both sides
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)=\frac{d}{dx}\left(1\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)
Use differentiation rules
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(x^{2}\right)}{36}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{2x}{36}
Calculate
\frac{x}{18}
\frac{x}{18}+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(y^{2}\right)}{9}
Evaluate the derivative
\frac{2y\frac{dy}{dx}}{9}
\frac{x}{18}+\frac{2y\frac{dy}{dx}}{9}
Calculate
\frac{x+4y\frac{dy}{dx}}{18}
\frac{x+4y\frac{dy}{dx}}{18}=\frac{d}{dx}\left(1\right)
Calculate the derivative
\frac{x+4y\frac{dy}{dx}}{18}=0
Simplify
x+4y\frac{dy}{dx}=0
Move the constant to the right side
4y\frac{dy}{dx}=0-x
Removing 0 doesn't change the value,so remove it from the expression
4y\frac{dy}{dx}=-x
Divide both sides
\frac{4y\frac{dy}{dx}}{4y}=\frac{-x}{4y}
Divide the numbers
\frac{dy}{dx}=\frac{-x}{4y}
\text{Use }\frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}\text{ to rewrite the fraction}
\frac{dy}{dx}=-\frac{x}{4y}
Take the derivative of both sides
\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d}{dx}\left(-\frac{x}{4y}\right)
Calculate the derivative
\frac{d^2y}{dx^2}=\frac{d}{dx}\left(-\frac{x}{4y}\right)
Use differentiation rules
\frac{d^2y}{dx^2}=-\frac{\frac{d}{dx}\left(x\right)\times 4y-x\times \frac{d}{dx}\left(4y\right)}{\left(4y\right)^{2}}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{d^2y}{dx^2}=-\frac{1\times 4y-x\times \frac{d}{dx}\left(4y\right)}{\left(4y\right)^{2}}
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(4y\right)
Simplify
4\times \frac{d}{dx}\left(y\right)
Calculate
4\frac{dy}{dx}
\frac{d^2y}{dx^2}=-\frac{1\times 4y-x\times 4\frac{dy}{dx}}{\left(4y\right)^{2}}
Any expression multiplied by 1 remains the same
\frac{d^2y}{dx^2}=-\frac{4y-x\times 4\frac{dy}{dx}}{\left(4y\right)^{2}}
Use the commutative property to reorder the terms
\frac{d^2y}{dx^2}=-\frac{4y-4x\frac{dy}{dx}}{\left(4y\right)^{2}}
Calculate
More Steps Hide Steps
Evaluate
\left(4y\right)^{2}
Evaluate the power
4^{2}y^{2}
Evaluate the power
16y^{2}
\frac{d^2y}{dx^2}=-\frac{4y-4x\frac{dy}{dx}}{16y^{2}}
Calculate
\frac{d^2y}{dx^2}=-\frac{y-x\frac{dy}{dx}}{4y^{2}}
\text{Use equation }\frac{dy}{dx}=-\frac{x}{4y}\text{ to substitute}
\frac{d^2y}{dx^2}=-\frac{y-x\left(-\frac{x}{4y}\right)}{4y^{2}}
Solution
More Steps Hide Steps
Calculate
-\frac{y-x\left(-\frac{x}{4y}\right)}{4y^{2}}
Multiply the terms
More Steps Hide Steps
Evaluate
x\left(-\frac{x}{4y}\right)
Multiplying or dividing an odd number of negative terms equals a negative
-x\times \frac{x}{4y}
Multiply the terms
-\frac{x\times x}{4y}
Multiply the terms
-\frac{x^{2}}{4y}
-\frac{y-\left(-\frac{x^{2}}{4y}\right)}{4y^{2}}
Subtract the terms
More Steps Hide Steps
Simplify
y-\left(-\frac{x^{2}}{4y}\right)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y+\frac{x^{2}}{4y}
Reduce fractions to a common denominator
\frac{y\times 4y}{4y}+\frac{x^{2}}{4y}
Write all numerators above the common denominator
\frac{y\times 4y+x^{2}}{4y}
Multiply the terms
\frac{4y^{2}+x^{2}}{4y}
-\frac{\frac{4y^{2}+x^{2}}{4y}}{4y^{2}}
Divide the terms
More Steps Hide Steps
Evaluate
\frac{\frac{4y^{2}+x^{2}}{4y}}{4y^{2}}
Multiply by the reciprocal
\frac{4y^{2}+x^{2}}{4y}\times \frac{1}{4y^{2}}
Multiply the terms
\frac{4y^{2}+x^{2}}{4y\times 4y^{2}}
Multiply the terms
\frac{4y^{2}+x^{2}}{16y^{3}}
-\frac{4y^{2}+x^{2}}{16y^{3}}
\frac{d^2y}{dx^2}=-\frac{4y^{2}+x^{2}}{16y^{3}}
Show Solutions
Hide Solutions
Rewrite the equation
\begin{align}&r=\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\\&r=-\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\end{align}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Multiply both sides of the equation by LCD
\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)\times 36=1\times 36
Simplify the equation
More Steps Hide Steps
Evaluate
\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)\times 36
Apply the distributive property
\frac{x^{2}}{36}\times 36+\frac{y^{2}}{9}\times 36
Simplify
x^{2}+y^{2}\times 4
Use the commutative property to reorder the terms
x^{2}+4y^{2}
x^{2}+4y^{2}=1\times 36
Any expression multiplied by 1 remains the same
x^{2}+4y^{2}=36
\text{To convert the equation to polar coordinates,substitute }x\text{ for }r\cos\left(\theta \right)\text{ and }y\text{ for }r\sin\left(\theta \right)
\left(\cos\left(\theta \right)\times r\right)^{2}+4\left(\sin\left(\theta \right)\times r\right)^{2}=36
Factor the expression
\left(\cos^{2}\left(\theta \right)+4\sin^{2}\left(\theta \right)\right)r^{2}=36
Simplify the expression
\left(-3\cos^{2}\left(\theta \right)+4\right)r^{2}=36
Divide the terms
r^{2}=\frac{36}{-3\cos^{2}\left(\theta \right)+4}
Simplify the expression
r^{2}=\frac{36}{1+3\sin^{2}\left(\theta \right)}
Evaluate the power
r=\pm \sqrt{\frac{36}{1+3\sin^{2}\left(\theta \right)}}
Simplify the expression
More Steps Hide Steps
Evaluate
\sqrt{\frac{36}{1+3\sin^{2}\left(\theta \right)}}
To take a root of a fraction,take the root of the numerator and denominator separately
\frac{\sqrt{36}}{\sqrt{1+3\sin^{2}\left(\theta \right)}}
Simplify the radical expression
More Steps Hide Steps
Evaluate
\sqrt{36}
\text{Write the number in exponential form with the base of }6
\sqrt{6^{2}}
\text{Reduce the index of the radical and exponent with }2
6
\frac{6}{\sqrt{1+3\sin^{2}\left(\theta \right)}}
Multiply by the Conjugate
\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{\sqrt{1+3\sin^{2}\left(\theta \right)}\times \sqrt{1+3\sin^{2}\left(\theta \right)}}
Calculate
\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}
r=\pm \frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}
Solution
\begin{align}&r=\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\\&r=-\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\end{align}
Show Solutions
Hide Solutions
Graph
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy