Question
upstudy study bank question image url

If \( \mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3 \), and \( \mathrm{m} \angle A C D=9 x+27 \), what is the value of \( x \) ? 1) 10 2) 2 3) 3 4) 15 8 In rhombus \( A B C D \), the diagonals \( \overline{A C} \) and \( \overline{B D} \) intersect at \( E \). If \( A E=5 \) and \( B E=12 \), what is the length of \( \overline{A B} \) ? 1) 7 2) 10 3) 13 4) 17 9calene triangle \( A B C \) is similar to triangle \( D E F \). Which statement is false? 1) \( A B: B C=D E: E F \) 2) \( A C: D F=B C: E F \) 3) \( \angle A C B \cong \angle D F E \) 4) \( \angle A B C \cong \angle E D F \)

Ask by Weston Weber. in China
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

### 问题 7 如果 \( \angle A = x^{2} - 6x \), \( \angle B = 2x - 3 \),且 \( \angle ACD = 9x + 27 \),求 \( x \) 的值。 **解答:** 设 \( \angle A + \angle B + \angle ACD = 180^\circ \)。 \[ x^{2} - 6x + 2x - 3 + 9x + 27 = 180 \] \[ x^{2} + 5x + 24 = 180 \] \[ x^{2} + 5x - 156 = 0 \] 解方程: \[ x = \frac{-5 \pm \sqrt{25 + 624}}{2} = \frac{-5 \pm \sqrt{649}}{2} \] 取正值: \[ x ≈ 10.24 \] 选项中最接近的是 **10**。 **答案:** 1) 10 --- ### 问题 8 在菱形 \( ABCD \) 中,对角线 \( \overline{AC} \) 和 \( \overline{BD} \) 在 \( E \) 点相交。如果 \( AE = 5 \) 且 \( BE = 12 \),求 \( \overline{AB} \) 的长度。 **解答:** 菱形的对角线互相垂直且平分。因此,\( \triangle AEB \) 是直角三角形,边长为 5 和 12。 根据勾股定理: \[ AB = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] **答案:** 3) 13 --- ### 问题 9 锐角三角形 \( ABC \) 与三角形 \( DEF \) 相似。以下哪项陈述是错误的? 1. \( AB : BC = DE : EF \) 2. \( AC : DF = BC : EF \) 3. \( \angle ACB \cong \angle DFE \) 4. \( \angle ABC \cong \angle EDF \) **解答:** 相似三角形对应边的比例应一致,即 \( AB : DE = BC : EF = AC : DF \)。 选项 2 中 \( AC : DF = BC : EF \) 不符合对应边比例关系,因此这是错误的陈述。 **答案:** 2) \( AC : DF = BC : EF \)

Solution

### 问题 7 如果 \( \angle A = x^{2} - 6x \), \( \angle B = 2x - 3 \),且 \( \angle ACD = 9x + 27 \),求 \( x \) 的值。 **解答:** 假设这是一个三角形,三个角的和为 \( 180^\circ \)。 \[ (x^{2} - 6x) + (2x - 3) + (9x + 27) = 180 \] \[ x^{2} + 5x + 24 = 180 \] \[ x^{2} + 5x - 156 = 0 \] 解方程: \[ x = \frac{-5 \pm \sqrt{25 + 624}}{2} = \frac{-5 \pm \sqrt{649}}{2} \] 由于 \( x \) 为角度,应取正值: \[ x ≈ \frac{-5 + 25.48}{2} ≈ 10.24 \] 但在选项中最接近的是 **10**。 **答案:** 1) 10 --- ### 问题 8 在菱形 \( ABCD \) 中,对角线 \( \overline{AC} \) 和 \( \overline{BD} \) 在 \( E \) 点相交。如果 \( AE = 5 \) 且 \( BE = 12 \),求 \( \overline{AB} \) 的长度。 **解答:** 菱形的对角线互相垂直,并且平分彼此。于是 \( \triangle AEB \) 是直角三角形,边长分别为 5 和 12。 根据勾股定理: \[ AB = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] **答案:** 3) 13 --- ### 问题 9 锐角三角形 \( ABC \) 与三角形 \( DEF \) 相似。以下哪项陈述是错误的? 1. \( AB : BC = DE : EF \) 2. \( AC : DF = BC : EF \) 3. \( \angle ACB \cong \angle DFE \) 4. \( \angle ABC \cong \angle EDF \) **解答:** 相似三角形对应边的比例应一致,即 \( AB : DE = BC : EF = AC : DF \)。 选项 2 中 \( AC : DF = BC : EF \) 不符合对应边比例关系,因此这是错误的陈述。 **答案:** 2) \( AC : DF = BC : EF \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve for \(x\), we know that in any triangle, the measures of angles should sum up to 180 degrees. Setting up the equation: \[ x^2 - 6x + (2x - 3) + (9x + 27) = 180 \] This simplifies to: \[ x^2 + 5x + 24 = 180 \quad \Rightarrow \quad x^2 + 5x - 156 = 0 \] Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), we can solve for \(x\). Thus, the possible solutions need to be checked against provided options. --- In rhombus \(ABCD\), the diagonals intersect at right angles and bisect each other. To find the length of \(AB\): Using the Pythagorean theorem, we calculate \(AB\): \[ AB = \sqrt{AE^2 + BE^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Thus, the length of \(\overline{AB}\) is indeed 13, confirming that option 3 is correct.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy