Question
upstudy study bank question image url

Questions A. Rationalise the denominators of the following expressions, without the use of a catculator: \( \begin{array}{ll}\text { 3. } \frac{2}{4+\sqrt{2}} & \text { 4. } \frac{6}{3-\sqrt{5}}\end{array} \)

Ask by Schwartz Pena. in South Africa
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

To rationalize the denominators: 1. For \( \frac{2}{4 + \sqrt{2}} \), multiply numerator and denominator by \( 4 - \sqrt{2} \): \[ \frac{2(4 - \sqrt{2})}{(4 + \sqrt{2})(4 - \sqrt{2})} = \frac{8 - 2\sqrt{2}}{14} = \frac{4 - \sqrt{2}}{7} \] 2. For \( \frac{6}{3 - \sqrt{5}} \), multiply numerator and denominator by \( 3 + \sqrt{5} \): \[ \frac{6(3 + \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})} = \frac{18 + 6\sqrt{5}}{4} = \frac{9 + 3\sqrt{5}}{2} \] Final answers: \[ \frac{4 - \sqrt{2}}{7} \quad \text{and} \quad \frac{9 + 3\sqrt{5}}{2} \]

Solution

To rationalize the denominators of the given expressions without using a calculator, we'll use the method of multiplying by the **conjugate** of the denominator. The conjugate of a binomial \( a + b \) is \( a - b \), and vice versa. This method helps eliminate the square roots in the denominator. Let's tackle each expression step-by-step. --- ### **3. \( \frac{2}{4 + \sqrt{2}} \)** **Step 1: Identify the Conjugate** The denominator is \( 4 + \sqrt{2} \). Its conjugate is \( 4 - \sqrt{2} \). **Step 2: Multiply Numerator and Denominator by the Conjugate** \[ \frac{2}{4 + \sqrt{2}} \times \frac{4 - \sqrt{2}}{4 - \sqrt{2}} = \frac{2(4 - \sqrt{2})}{(4 + \sqrt{2})(4 - \sqrt{2})} \] **Step 3: Simplify the Denominator** \[ (4 + \sqrt{2})(4 - \sqrt{2}) = 4^2 - (\sqrt{2})^2 = 16 - 2 = 14 \] **Step 4: Expand the Numerator** \[ 2(4 - \sqrt{2}) = 8 - 2\sqrt{2} \] **Step 5: Combine the Results** \[ \frac{8 - 2\sqrt{2}}{14} = \frac{8}{14} - \frac{2\sqrt{2}}{14} = \frac{4}{7} - \frac{\sqrt{2}}{7} = \frac{4 - \sqrt{2}}{7} \] **Final Answer:** \[ \boxed{\dfrac{4 - \sqrt{2}}{7}} \] --- ### **4. \( \frac{6}{3 - \sqrt{5}} \)** **Step 1: Identify the Conjugate** The denominator is \( 3 - \sqrt{5} \). Its conjugate is \( 3 + \sqrt{5} \). **Step 2: Multiply Numerator and Denominator by the Conjugate** \[ \frac{6}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} = \frac{6(3 + \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})} \] **Step 3: Simplify the Denominator** \[ (3 - \sqrt{5})(3 + \sqrt{5}) = 3^2 - (\sqrt{5})^2 = 9 - 5 = 4 \] **Step 4: Expand the Numerator** \[ 6(3 + \sqrt{5}) = 18 + 6\sqrt{5} \] **Step 5: Combine the Results** \[ \frac{18 + 6\sqrt{5}}{4} = \frac{18}{4} + \frac{6\sqrt{5}}{4} = \frac{9}{2} + \frac{3\sqrt{5}}{2} = \frac{9 + 3\sqrt{5}}{2} \] **Final Answer:** \[ \boxed{\dfrac{9 + 3\sqrt{5}}{2}} \] --- These rationalized forms eliminate the radicals from the denominators, making the expressions simpler and more standardized.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To rationalize the denominator of \( \frac{2}{4+\sqrt{2}} \), multiply the numerator and denominator by the conjugate of the denominator, which is \( 4-\sqrt{2} \). Hence, \[ \frac{2}{4+\sqrt{2}} \times \frac{4-\sqrt{2}}{4-\sqrt{2}} = \frac{2(4-\sqrt{2})}{(4+\sqrt{2})(4-\sqrt{2})} = \frac{8-2\sqrt{2}}{16-2} = \frac{8-2\sqrt{2}}{14} = \frac{4-\sqrt{2}}{7}. \] For the expression \( \frac{6}{3-\sqrt{5}} \), similarly, multiply by the conjugate: \[ \frac{6}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{6(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{18 + 6\sqrt{5}}{9-5} = \frac{18 + 6\sqrt{5}}{4} = \frac{9 + 3\sqrt{5}}{2}. \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy