Question
upstudy study bank question image url

7. What is the difference between the way objects move over the Earth in the northern hemisphere compared with those in the southern hemisphere? Explain your answer.

Ask by Washington Pollard. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

In the Northern Hemisphere, objects move to the right, while in the Southern Hemisphere, they move to the left due to the Earth's rotation. This difference affects weather patterns, ocean currents, and the direction of moving objects like projectiles.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

In the northern hemisphere, the Coriolis effect causes moving objects, like winds and ocean currents, to deflect to the right, leading to cyclonic motion that spins counterclockwise. Meanwhile, in the southern hemisphere, the same effect makes objects deflect to the left, resulting in cyclonic patterns that spin clockwise. This intriguing phenomenon arises from the rotation of the Earth, affecting weather patterns and ocean currents differently in each hemisphere. Understanding this difference is critical for navigators, meteorologists, and even pilots. For example, when planning flight routes, pilots must account for these curvature effects, as they greatly influence wind patterns. Additionally, knowing how storms form and behave in different hemispheres helps researchers predict severe weather events, improving safety and preparedness.

Related Questions

1. A stone is dropped from the top of a building and hits the ground travelling at Checkpoint 2 \( 45 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Ignore the effects of air resistance. Calculate the height of the building. 2. A ball is thrown upward at an unknown initial velocity. It takes \( 3,2 \mathrm{~s} \) to reach its highest point. Ignore the effects of air resistance. Calculate the initial velocity of the ball Exercise 2.1 Ignore the effects of air resistance. 1. A bomb falls out of an aircraft. To break the sound barrier of \( 340 \mathrm{~m} . \mathrm{s}^{-1} \) : a) how far does it need to fall? b) how long will this take? 2. A stone is thrown vertically upward from ground level with a velocity of \( 25 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate: a) the maximum height reached. b) the time taken to reach its maximum height. 3. A stone is dropped from a bridge and is seen to splash into the water 3 s later. Calculate: a) the height of the bridge. b) the velocity with which the stone strikes the water. 4. A brick falls off a scaffold at a height of 80 m above the ground. Calculate: a) the magnitude of its velocity after falling for 2 s . b) the magnitude of its velocity when it hits the ground. c) the time taken to fall to the ground. 5. A stone, dropped from the top of a lighthouse, strikes the rocks below at a speed of \( 50 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the height of the lighthouse. 6. A stone is thrown vertically upward and reaches a height of 10 m . a) What was the initial velocity of the stone as it left the thrower's hand?
Physics South Africa Feb 04, 2025

Latest Physics Questions

1. A stone is dropped from the top of a building and hits the ground travelling at Checkpoint 2 \( 45 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Ignore the effects of air resistance. Calculate the height of the building. 2. A ball is thrown upward at an unknown initial velocity. It takes \( 3,2 \mathrm{~s} \) to reach its highest point. Ignore the effects of air resistance. Calculate the initial velocity of the ball Exercise 2.1 Ignore the effects of air resistance. 1. A bomb falls out of an aircraft. To break the sound barrier of \( 340 \mathrm{~m} . \mathrm{s}^{-1} \) : a) how far does it need to fall? b) how long will this take? 2. A stone is thrown vertically upward from ground level with a velocity of \( 25 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate: a) the maximum height reached. b) the time taken to reach its maximum height. 3. A stone is dropped from a bridge and is seen to splash into the water 3 s later. Calculate: a) the height of the bridge. b) the velocity with which the stone strikes the water. 4. A brick falls off a scaffold at a height of 80 m above the ground. Calculate: a) the magnitude of its velocity after falling for 2 s . b) the magnitude of its velocity when it hits the ground. c) the time taken to fall to the ground. 5. A stone, dropped from the top of a lighthouse, strikes the rocks below at a speed of \( 50 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the height of the lighthouse. 6. A stone is thrown vertically upward and reaches a height of 10 m . a) What was the initial velocity of the stone as it left the thrower's hand?
Physics South Africa Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy